Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 181, Number 2, Pages 337–348
DOI: https://doi.org/10.4213/tmf8771
(Mi tmf8771)
 

This article is cited in 8 scientific papers (total in 8 papers)

Energy splitting in dynamical tunneling

E. V. Vybornyi

Moscow Institute of Electronics and Mathematics, National Research University Higher School of Economics, Moscow, Russia
Full-text PDF (423 kB) Citations (8)
References:
Abstract: We propose an operator method for calculating the semiclassical asymptotic form of the energy splitting value in the general case of tunneling between symmetric orbits in the phase space. We use this approach in the case of a particle on a circle to obtain the asymptotic form of the energy tunneling splitting related to the over-barrier reflection from the potential. As an example, we consider the quantum pendulum in the rotor regime.
Keywords: dynamical tunneling, tunneling splitting, Schrödinger equation, semiclassical approximation, over-barrier reflection.
Received: 17.07.2014
English version:
Theoretical and Mathematical Physics, 2014, Volume 181, Issue 2, Pages 1418–1427
DOI: https://doi.org/10.1007/s11232-014-0222-6
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: E. V. Vybornyi, “Energy splitting in dynamical tunneling”, TMF, 181:2 (2014), 337–348; Theoret. and Math. Phys., 181:2 (2014), 1418–1427
Citation in format AMSBIB
\Bibitem{Vyb14}
\by E.~V.~Vybornyi
\paper Energy splitting in dynamical tunneling
\jour TMF
\yr 2014
\vol 181
\issue 2
\pages 337--348
\mathnet{http://mi.mathnet.ru/tmf8771}
\crossref{https://doi.org/10.4213/tmf8771}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3344454}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...181.1418V}
\elib{https://elibrary.ru/item.asp?id=22834547}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 181
\issue 2
\pages 1418--1427
\crossref{https://doi.org/10.1007/s11232-014-0222-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000345836900007}
\elib{https://elibrary.ru/item.asp?id=24013548}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84915820592}
Linking options:
  • https://www.mathnet.ru/eng/tmf8771
  • https://doi.org/10.4213/tmf8771
  • https://www.mathnet.ru/eng/tmf/v181/i2/p337
  • This publication is cited in the following 8 articles:
    1. Sofia V. Rumyantseva, “Asymptotic Expansion of Solutions of the 2nd Order Difference Equations in an Unbounded Domain”, Acta Appl Math, 195:1 (2025)  crossref
    2. E. V. Vybornyi, S. V. Rumyantseva, “Semiclassical Asymptotics of Oscillating Tunneling for a Quadratic Hamiltonian on the Algebra su(1,1)”, Math. Notes, 112:5 (2022), 642–655  mathnet  crossref  crossref  mathscinet
    3. A. Yu. Anikin, J. Bruening, S. Yu. Dobrokhotov, E. V. Vybornyi, “Averaging and spectral bands for the 2-D magnetic Schrodinger operator with growing and one-direction periodic potential”, Russ. J. Math. Phys., 26:3 (2019), 265–276  crossref  mathscinet  isi
    4. M. Karasev, E. Vybornyi, “Bi-orbital states in hyperbolic traps”, Russ. J. Math. Phys., 25:4 (2018), 500–508  crossref  mathscinet  zmath  isi  scopus
    5. M. V. Karasev, E. M. Novikova, E. V. Vybornyi, “Instantons via Breaking Geometric Symmetry in Hyperbolic Traps”, Math. Notes, 102:6 (2017), 776–786  mathnet  mathnet  crossref  isi  scopus
    6. M. V. Karasev, E. M. Novikova, E. V. Vybornyi, “Non-Lie Top Tunneling and Quantum Bilocalization in Planar Penning Trap”, Math. Notes, 100:6 (2016), 807–819  mathnet  mathnet  crossref  isi  scopus
    7. Lars Ackermann, Stefan Schönig, Stefan Jablonski, Lecture Notes in Business Information Processing, 272, Enterprise and Organizational Modeling and Simulation, 2016, 3  crossref
    8. Dong Ch., Wang L., Zhao K., “Embedded Mobile Crowd Service Systems Based on Opportunistic Geological Grid and Dynamical Segmentation”, EURASIP J. Embed. Syst., 2015, no. 1, 3  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:552
    Full-text PDF :218
    References:100
    First page:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025