Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 181, Number 2, Pages 312–321
DOI: https://doi.org/10.4213/tmf8680
(Mi tmf8680)
 

This article is cited in 2 scientific papers (total in 2 papers)

Correlated Lloyd model: Exact solution

G. G. Kozlov

Fock Institute of Physics, St. Petersburg State University, St. Petersburg, Russia
Full-text PDF (611 kB) Citations (2)
References:
Abstract: We describe an exactly solvable model of a disordered system that is a generalized Lloyd model{;} it differs from the classical model because the random potential is not a $\delta$-correlated random process. We show that the exact average Green's function in this case is independent of the correlation radius of the random potential and, as in the classical Lloyd model, is a crystal Green's function whose energy argument acquires an imaginary part dependent on the disorder degree.
Keywords: Lloyd model, exactly solvable model, correlated disordered system, density of states, average Green's function.
Received: 17.03.2014
English version:
Theoretical and Mathematical Physics, 2014, Volume 181, Issue 2, Pages 1396–1404
DOI: https://doi.org/10.1007/s11232-014-0220-8
Bibliographic databases:
Language: Russian
Citation: G. G. Kozlov, “Correlated Lloyd model: Exact solution”, TMF, 181:2 (2014), 312–321; Theoret. and Math. Phys., 181:2 (2014), 1396–1404
Citation in format AMSBIB
\Bibitem{Koz14}
\by G.~G.~Kozlov
\paper Correlated Lloyd model: Exact solution
\jour TMF
\yr 2014
\vol 181
\issue 2
\pages 312--321
\mathnet{http://mi.mathnet.ru/tmf8680}
\crossref{https://doi.org/10.4213/tmf8680}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3344452}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...181.1396K}
\elib{https://elibrary.ru/item.asp?id=22834545}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 181
\issue 2
\pages 1396--1404
\crossref{https://doi.org/10.1007/s11232-014-0220-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000345836900005}
\elib{https://elibrary.ru/item.asp?id=24012677}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84915751185}
Linking options:
  • https://www.mathnet.ru/eng/tmf8680
  • https://doi.org/10.4213/tmf8680
  • https://www.mathnet.ru/eng/tmf/v181/i2/p312
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024