Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 179, Number 1, Pages 36–77
DOI: https://doi.org/10.4213/tmf8618
(Mi tmf8618)
 

Generalized oscillator representations for generalized Calogero Hamiltonians

B. L. Voronov, I. V. Tyutin

Lebedev Physical Institute, RAS, Moscow, Russia
References:
Abstract: We construct generalized oscillator representations for all generalized Calogero Hamiltonians with the potential $V(x)=g_1/x^2+g_2x^2$, $g_1\ge-1/4$, $g_2>0$. These representations are generically nonunique, but for each Hamiltonian, there exists an optimum representation explicitly determining the ground state and its energy. For generalized Calogero Hamiltonians with coupling constants $g_1<-1/4$ or $g_2<0$, generalized oscillator representations do not exist, which agrees with the fact that the corresponding Hamiltonians are not bounded from below.
Keywords: quantum mechanics, oscillator representation, self-adjoint Hamiltonian.
Received: 24.11.2013
English version:
Theoretical and Mathematical Physics, 2014, Volume 179, Issue 1, Pages 416–451
DOI: https://doi.org/10.1007/s11232-014-0153-2
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: B. L. Voronov, I. V. Tyutin, “Generalized oscillator representations for generalized Calogero Hamiltonians”, TMF, 179:1 (2014), 36–77; Theoret. and Math. Phys., 179:1 (2014), 416–451
Citation in format AMSBIB
\Bibitem{VorTyu14}
\by B.~L.~Voronov, I.~V.~Tyutin
\paper Generalized oscillator representations for generalized Calogero Hamiltonians
\jour TMF
\yr 2014
\vol 179
\issue 1
\pages 36--77
\mathnet{http://mi.mathnet.ru/tmf8618}
\crossref{https://doi.org/10.4213/tmf8618}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3301498}
\zmath{https://zbmath.org/?q=an:1298.81084}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...179..416V}
\elib{https://elibrary.ru/item.asp?id=21826668}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 179
\issue 1
\pages 416--451
\crossref{https://doi.org/10.1007/s11232-014-0153-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000337055500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899985229}
Linking options:
  • https://www.mathnet.ru/eng/tmf8618
  • https://doi.org/10.4213/tmf8618
  • https://www.mathnet.ru/eng/tmf/v179/i1/p36
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:511
    Full-text PDF :195
    References:73
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024