Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 179, Number 1, Pages 24–35
DOI: https://doi.org/10.4213/tmf8599
(Mi tmf8599)
 

This article is cited in 3 scientific papers (total in 3 papers)

Localization of translation-invariant Gibbs measures for the Potts and “solid-on-solid” models on a Cayley tree

R. M. Khakimov

Namangam State University
Full-text PDF (414 kB) Citations (3)
References:
Abstract: We study Potts and “solid-on-solid” models with q2 states on the Cayley tree of order k1. For any values of the parameter q in the Potts model and q6 in the “solid-on-solid” model, we find sets containing all translation-invariant Gibbs measures.
Keywords: Cayley tree, configuration, Gibbs measure, Potts model, “solid-on-solid” model, periodic measure, translation-invariant measure.
Received: 02.10.2013
English version:
Theoretical and Mathematical Physics, 2014, Volume 179, Issue 1, Pages 405–415
DOI: https://doi.org/10.1007/s11232-014-0152-3
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: R. M. Khakimov, “Localization of translation-invariant Gibbs measures for the Potts and “solid-on-solid” models on a Cayley tree”, TMF, 179:1 (2014), 24–35; Theoret. and Math. Phys., 179:1 (2014), 405–415
Citation in format AMSBIB
\Bibitem{Kha14}
\by R.~M.~Khakimov
\paper Localization of translation-invariant Gibbs measures for the~Potts and ``solid-on-solid'' models on a~Cayley tree
\jour TMF
\yr 2014
\vol 179
\issue 1
\pages 24--35
\mathnet{http://mi.mathnet.ru/tmf8599}
\crossref{https://doi.org/10.4213/tmf8599}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3301496}
\zmath{https://zbmath.org/?q=an:1298.82012}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...179..405K}
\elib{https://elibrary.ru/item.asp?id=21826667}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 179
\issue 1
\pages 405--415
\crossref{https://doi.org/10.1007/s11232-014-0152-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000337055500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899980477}
Linking options:
  • https://www.mathnet.ru/eng/tmf8599
  • https://doi.org/10.4213/tmf8599
  • https://www.mathnet.ru/eng/tmf/v179/i1/p24
  • This publication is cited in the following 3 articles:
    1. O. Sh. Karshiboev, “Periodic Gibbs measures for the three-state SOS model on a Cayley tree with a translation-invariant external field”, Theoret. and Math. Phys., 212:3 (2022), 1276–1283  mathnet  crossref  crossref  mathscinet  adsnasa
    2. Muzaffar M. Rahmatullaev, Obid Sh. Karshiboev, “Gibbs measures for the three-state SOS model with external field on a Cayley tree”, Positivity, 26:5 (2022)  crossref
    3. Haydarov F. Khakimov R., “An improvement of extremality regions for Gibbs measures of the Potts model on a Cayley tree”, Algebra, Analysis and Quantum Probability, Journal of Physics Conference Series, 697, ed. Ayupov S. Chilin V. Ganikhodjaev N. Mukhamedov F. Rakhimov I., IOP Publishing Ltd, 2016, 012019  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:337
    Full-text PDF :172
    References:67
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025