Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 179, Number 1, Pages 78–89
DOI: https://doi.org/10.4213/tmf8568
(Mi tmf8568)
 

This article is cited in 13 scientific papers (total in 13 papers)

Short-wave transverse instabilities of line solitons of the two-dimensional hyperbolic nonlinear Schrödinger equation

D. E. Pelinovskyab, E. A. Ruvinskayaa, O. E. Kurkinaac, B. Deconinckd

a Nizhny Novgorod State Technical University, Nizhny Novgorod, Russia
b Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada
c Higher School of Economics, Nizhny Novgorod, Russia
d Department of Applied Mathematics, University of Washington, Seattle, WA, USA
References:
Abstract: We prove that line solitons of the two-dimensional hyperbolic nonlinear Schrödinger equation are unstable under transverse perturbations of arbitrarily small periods, i.e., short waves. The analysis is based on the construction of Jost functions for the continuous spectrum of Schrödinger operators, the Sommerfeld radiation conditions, and the Lyapunov–Schmidt decomposition. We derive precise asymptotic expressions for the instability growth rate in the limit of short periods.
Keywords: nonlinear Schrödinger equation, soliton, transverse instability, Lyapunov–Schmidt decomposition, Fermi's golden rule.
Received: 24.06.2013
English version:
Theoretical and Mathematical Physics, 2014, Volume 179, Issue 1, Pages 452–461
DOI: https://doi.org/10.1007/s11232-014-0154-1
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. E. Pelinovsky, E. A. Ruvinskaya, O. E. Kurkina, B. Deconinck, “Short-wave transverse instabilities of line solitons of the two-dimensional hyperbolic nonlinear Schrödinger equation”, TMF, 179:1 (2014), 78–89; Theoret. and Math. Phys., 179:1 (2014), 452–461
Citation in format AMSBIB
\Bibitem{PelRuvKur14}
\by D.~E.~Pelinovsky, E.~A.~Ruvinskaya, O.~E.~Kurkina, B.~Deconinck
\paper Short-wave transverse instabilities of line solitons of the~two-dimensional hyperbolic nonlinear Schr\"odinger equation
\jour TMF
\yr 2014
\vol 179
\issue 1
\pages 78--89
\mathnet{http://mi.mathnet.ru/tmf8568}
\crossref{https://doi.org/10.4213/tmf8568}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3301499}
\zmath{https://zbmath.org/?q=an:1301.35156}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...179..452P}
\elib{https://elibrary.ru/item.asp?id=21826669}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 179
\issue 1
\pages 452--461
\crossref{https://doi.org/10.1007/s11232-014-0154-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000337055500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899918373}
Linking options:
  • https://www.mathnet.ru/eng/tmf8568
  • https://doi.org/10.4213/tmf8568
  • https://www.mathnet.ru/eng/tmf/v179/i1/p78
  • This publication is cited in the following 13 articles:
    1. Jean-Claude Saut, Yuexun Wang, “On the hyperbolic nonlinear Schrödinger equations”, Adv Cont Discr Mod, 2024:1 (2024)  crossref
    2. Fonkoua S.A.T. Pelap F.B. Deffo G.R. Fomethe A., “Rogue Wave Signals in a Coupled Anharmonic Network: Effects of the Transverse Direction”, Eur. Phys. J. Plus, 136:4 (2021), 416  crossref  isi
    3. Jhangeer A., Muddassar M., Inc M., Kousar M., Chu Yu.-M., “Computation of Complex Fields of Perturbed (2+1)-Dimensional Schrodinger'S Hyperbolic Equation”, Opt. Quantum Electron., 53:7 (2021), 352  crossref  mathscinet  isi
    4. Durur H., Ilhan E., Bulut H., “Novel Complex Wave Solutions of the (2+1)-Dimensional Hyperbolic Nonlinear Schrodinger Equation”, Fractal Pract., 4:3 (2020), 41  crossref  mathscinet  isi  scopus
    5. L. A. Cisneros-Ake, R. Carretero-Gonzalez, P. G. Kevrekidis, B. A. Malomed, “Dynamics and stabilization of bright soliton stripes in the hyperbolic-dispersion nonlinear Schrodinger equation”, Commun. Nonlinear Sci. Numer. Simul., 74 (2019), 268–281  crossref  mathscinet  isi  scopus
    6. D. Pelinovsky, “Normal form for transverse instability of the line soliton with a nearly critical speed of propagation”, Math. Model. Nat. Phenom., 13:2 (2018), UNSP 23  crossref  mathscinet  isi  scopus
    7. M. J. Ablowitz, Y.-P. Ma, I. Rumanov, “A universal asymptotic regime in the hyperbolic nonlinear Schrödinger equation”, SIAM J. Appl. Math., 77:4 (2017), 1248–1268  crossref  mathscinet  zmath  isi  scopus
    8. M. Stanislavova, A. Stefanov, “On the stability of standing waves for $\mathcal{PT}$ symmetric Schrödinger and Klein-Gordon equations in higher space dimensions”, Proc. Amer. Math. Soc., 145:12 (2017), 5273–5285  crossref  mathscinet  zmath  isi  scopus
    9. N. V. Alexeeva, I. V. Barashenkov, Y. S. Kivshar, “Solitons in $\mathcal{PT}$ symmetric ladders of optical waveguides”, New J. Phys., 19 (2017), 113032  crossref  mathscinet  isi  scopus
    10. J. T. Cole, K. G. Makris, Z. H. Musslimani, D. N. Christodoulides, S. Rotter, “Modulational instability in PT-symmetric vector nonlinear Schrödinger system”, Physica D, 336 (2016), 53–61  crossref  mathscinet  zmath  isi  elib  scopus
    11. D. Pelinovsky, Yu. Shimabukuro, “Transverse instability of line solitary waves in massive Dirac equations”, J. Nonlinear Sci., 26:2 (2016), 365–403  crossref  mathscinet  zmath  isi  elib  scopus
    12. J. T. Cole, Z. H. Musslimani, “Spectral transverse instabilities and soliton dynamics in the higher-order multidimensional nonlinear Schrödinger equation”, Physica D, 313 (2015), 26–36  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    13. Ch. Klein, J.-C. Saut, “A numerical approach to blow-up issues for Davey-Stewartson II systems”, Commun. Pure Appl. Anal, 14:4 (2015), 1443–1467  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:548
    Full-text PDF :201
    References:87
    First page:24
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025