Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2013, Volume 177, Number 1, Pages 68–82
DOI: https://doi.org/10.4213/tmf8603
(Mi tmf8603)
 

This article is cited in 7 scientific papers (total in 7 papers)

p-Adic Gibbs measures for the hard core model with three states on the Cayley tree

O. N. Khakimov

Institute for Mathematics and Information Technologies, Academy of Sciences of Uzbekistan Republic, Tashkent, Uzbekistan
Full-text PDF (459 kB) Citations (7)
References:
Abstract: We study p-adic hard core models with three states on the Cayley tree. It is known that there are four types of such models. We find conditions that must be imposed on the order k of the Cayley tree and on the prime p for a translation-invariant p-adic Gibbs measure to exist.
Keywords: Cayley tree, configuration, Gibbs measure, hard core G-model, translation-invariant measure, p-adic number.
Received: 27.03.2013
English version:
Theoretical and Mathematical Physics, 2013, Volume 177, Issue 1, Pages 1339–1351
DOI: https://doi.org/10.1007/s11232-013-0107-0
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: O. N. Khakimov, “p-Adic Gibbs measures for the hard core model with three states on the Cayley tree”, TMF, 177:1 (2013), 68–82; Theoret. and Math. Phys., 177:1 (2013), 1339–1351
Citation in format AMSBIB
\Bibitem{Kha13}
\by O.~N.~Khakimov
\paper $p$-Adic Gibbs measures for the~hard core model with three states on the~Cayley tree
\jour TMF
\yr 2013
\vol 177
\issue 1
\pages 68--82
\mathnet{http://mi.mathnet.ru/tmf8603}
\crossref{https://doi.org/10.4213/tmf8603}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3230750}
\zmath{https://zbmath.org/?q=an:1303.82012}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...177.1339K}
\elib{https://elibrary.ru/item.asp?id=20732668}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 177
\issue 1
\pages 1339--1351
\crossref{https://doi.org/10.1007/s11232-013-0107-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000326625800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84887286730}
Linking options:
  • https://www.mathnet.ru/eng/tmf8603
  • https://doi.org/10.4213/tmf8603
  • https://www.mathnet.ru/eng/tmf/v177/i1/p68
  • This publication is cited in the following 7 articles:
    1. J G Polli, E P Raposo, G M Viswanathan, M G E da Luz, “Stochastic-like characteristics of arithmetic dynamical systems: the Collatz hailstone sequences”, J. Phys. Complex., 5:1 (2024), 015011  crossref
    2. Tukhtabaev A., “On G(2)-Periodic Quasi Gibbs Measures of P-Adic Potts Model on a Cayley Tree”, P-Adic Numbers Ultrametric Anal. Appl., 13:4 (2021), 291–307  crossref  mathscinet  isi
    3. Khakimov O. Mukhamedov F., “Chaotic Behavior of the P-Adic Potts-Bethe Mapping II”, Ergod. Theory Dyn. Syst., 2021, PII S0143385721000961  crossref  isi
    4. M. M. Rahmatullaev, O. N. Khakimov, A. M. Tukhtaboev, “A p-adic generalized Gibbs measure for the Ising model on a Cayley tree”, Theoret. and Math. Phys., 201:1 (2019), 1521–1530  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    5. Rahmatullaev M. Tukhtabaev A., “Non Periodic P-Adic Generalized Gibbs Measure For Ising Model”, P-Adic Numbers Ultrametric Anal. Appl., 11:4 (2019), 319–327  crossref  mathscinet  isi
    6. O. N. Khakimov, “p-Adic solid-on-solid model on a Cayley tree”, Theoret. and Math. Phys., 193:3 (2017), 1880–1893  mathnet  crossref  crossref  adsnasa  isi  elib
    7. O. N. Khakimov, “A p-adic hard-core model with three states on a Cayley tree”, Siberian Math. J., 57:4 (2016), 726–734  mathnet  crossref  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:425
    Full-text PDF :204
    References:65
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025