Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2013, Volume 177, Number 1, Pages 3–67
DOI: https://doi.org/10.4213/tmf8551
(Mi tmf8551)
 

This article is cited in 26 scientific papers (total in 26 papers)

Modifications of bundles, elliptic integrable systems, and related problems

A. V. Zotovabc, A. V. Smirnovad

a Institute for Theoretical and Experimental Physics, Moscow, Russia
b Moscow Institute for Physics and Technology (State University), Dolgoprudnyi, Moscow Oblast, Russia
c Steklov Mathematical Institute, RAS, Moscow, Russia
d Department of Mathematics, Columbia University, New York, USA
References:
Abstract: We describe a construction of elliptic integrable systems based on bundles with nontrivial characteristic classes, especially attending to the bundle-modification procedure, which relates models corresponding to different characteristic classes. We discuss applications and related problems such as the Knizhnik–Zamolodchikov–Bernard equations, classical and quantum RR-matrices, monopoles, spectral duality, Painlevé equations, and the classical–quantum correspondence. For an SL(N,C)-bundle on an elliptic curve with nontrivial characteristic classes, we obtain equations of isomonodromy deformations.
Keywords: integrable system, Painlevé equation, Hitchin system, modification of bundles.
Funding agency Grant number
Russian Foundation for Basic Research 12-01-00482
12-02-00594
12-01-33071_мол_а_вед
Dynasty Foundation
Received: 20.05.2013
English version:
Theoretical and Mathematical Physics, 2013, Volume 177, Issue 1, Pages 1281–1338
DOI: https://doi.org/10.1007/s11232-013-0106-1
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. V. Zotov, A. V. Smirnov, “Modifications of bundles, elliptic integrable systems, and related problems”, TMF, 177:1 (2013), 3–67; Theoret. and Math. Phys., 177:1 (2013), 1281–1338
Citation in format AMSBIB
\Bibitem{ZotSmi13}
\by A.~V.~Zotov, A.~V.~Smirnov
\paper Modifications of bundles, elliptic integrable systems, and related problems
\jour TMF
\yr 2013
\vol 177
\issue 1
\pages 3--67
\mathnet{http://mi.mathnet.ru/tmf8551}
\crossref{https://doi.org/10.4213/tmf8551}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3230749}
\zmath{https://zbmath.org/?q=an:06353903}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...177.1281Z}
\elib{https://elibrary.ru/item.asp?id=20732667}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 177
\issue 1
\pages 1281--1338
\crossref{https://doi.org/10.1007/s11232-013-0106-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000326625800001}
\elib{https://elibrary.ru/item.asp?id=21888330}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84887285821}
Linking options:
  • https://www.mathnet.ru/eng/tmf8551
  • https://doi.org/10.4213/tmf8551
  • https://www.mathnet.ru/eng/tmf/v177/i1/p3
  • This publication is cited in the following 26 articles:
    1. K. R. Atalikov, A. V. Zotov, “Gauge equivalence of $1+1$ Calogero–Moser–Sutherland field theory and a higher-rank trigonometric Landau–Lifshitz model”, Theoret. and Math. Phys., 219:3 (2024), 1004–1017  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    2. V. A. Pavlenko, “Solutions of the analogues of time-dependent Schrödinger equations corresponding to a pair of $H^{3+2}$ Hamiltonian systems”, Theoret. and Math. Phys., 212:3 (2022), 1181–1192  mathnet  crossref  crossref  mathscinet  adsnasa
    3. E. Trunina, A. Zotov, “Lax equations for relativistic $\mathrm{G}\mathrm{L}(NM,\mathbb{C})$ Gaudin models on elliptic curve”, J. Phys. A, 55:39 (2022), 395202–31  mathnet  crossref
    4. I. A. Sechin, A. V. Zotov, “Quadratic algebras based on $SL(NM)$ elliptic quantum $R$-matrices”, Theoret. and Math. Phys., 208:2 (2021), 1156–1164  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    5. E. S. Trunina, A. V. Zotov, “Multi-pole extension of the elliptic models of interacting integrable tops”, Theoret. and Math. Phys., 209:1 (2021), 1331–1356  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    6. Atalikov K. Zotov A., “Field Theory Generalizations of Two-Body Calogero-Moser Models in the Form of Landau-Lifshitz Equations”, J. Geom. Phys., 164 (2021), 104161  crossref  mathscinet  isi
    7. B. I. Suleimanov, “Isomonodromic quantization of the second Painlevé equation by means of conservative Hamiltonian systems with two degrees of freedom”, St. Petersburg Math. J., 33:6 (2022), 995–1009  mathnet  crossref
    8. I. A. Sechin, A. V. Zotov, “Integrable system of generalized relativistic interacting tops”, Theoret. and Math. Phys., 205:1 (2020), 1291–1302  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    9. Vasilyev M. Zotov A., “On Factorized Lax Pairs For Classical Many-Body Integrable Systems”, Rev. Math. Phys., 31:6 (2019), 1930002  crossref  mathscinet  isi
    10. A. V. Zotov, “Relativistic interacting integrable elliptic tops”, Theoret. and Math. Phys., 201:2 (2019), 1565–1580  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    11. Grekov A. Sechin I. Zotov A., “Generalized Model of Interacting Integrable Tops”, J. High Energy Phys., 2019, no. 10, 081  crossref  mathscinet  isi
    12. A. Grekov, A. Zotov, “On $R$-matrix valued Lax pairs for Calogero–Moser models”, J. Phys. A-Math. Theor., 51:31 (2018), 315202  crossref  mathscinet  isi  scopus
    13. A. V. Zotov, “Calogero–Moser model and $R$-matrix identities”, Theoret. and Math. Phys., 197:3 (2018), 1755–1770  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    14. V. A. Pavlenko, B. I. Suleimanov, “Solutions to analogues of non-stationary Schrödinger equations defined by isomonodromic Hamilton system $H^{2+1+1+1}$”, Ufa Math. J., 10:4 (2018), 92–102  mathnet  crossref  isi
    15. V. A. Pavlenko, B. I. Suleimanov, ““Quantizations” of isomonodromic Hamilton system $H^{\frac{7}{2}+1}$”, Ufa Math. J., 9:4 (2017), 97–107  mathnet  crossref  isi  elib
    16. A. Zotov, “Relativistic elliptic matrix tops and finite Fourier transformations”, Mod. Phys. Lett. A, 32:32 (2017), 1750169  crossref  mathscinet  zmath  isi  scopus
    17. D. P. Novikov, B. I. Suleimanov, ““Quantization” of an isomonodromic Hamiltonian Garnier system with two degrees of freedom”, Theoret. and Math. Phys., 187:1 (2016), 479–496  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    18. B. I. Suleimanov, “Quantum aspects of the integrability of the third Painlevé equation and a non-stationary time Schrödinger equation with the Morse potential”, Ufa Math. J., 8:3 (2016), 136–154  mathnet  crossref  mathscinet  isi  elib
    19. I. Sechin, A. Zotov, “Associative Yang–Baxter equation for quantum (semi-)dynamical $r$-matrices”, J. Math. Phys., 57:5 (2016), 053505  crossref  mathscinet  zmath  isi  elib  scopus
    20. JETP Letters, 101:9 (2015), 648–655  mathnet  crossref  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:1049
    Full-text PDF :374
    References:100
    First page:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025