Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2013, Volume 177, Number 1, Pages 83–92
DOI: https://doi.org/10.4213/tmf8540
(Mi tmf8540)
 

This article is cited in 2 scientific papers (total in 2 papers)

Quasi-Stäckel systems and two-dimensional Schrödinger equations in an electromagnetic field

V. G. Marikhin

Landau Institute of Theoretical Physics, RAS, Chernogolovka, Moscow Oblast, Russia
Full-text PDF (336 kB) Citations (2)
References:
Abstract: We obtain the complete classification of two-dimensional Schrödinger equations in an electromagnetic field with an additional integral quadratic in momenta. For this, we use a Kovalevskaya-type change of variables and reduce the Hamiltonians to a quasi-Stäckel form. In that form, we perform the classification in the Painlevé sense and then return to the original variables.
Keywords: quantum top, integrability, Schrödinger equation.
Received: 14.04.2013
English version:
Theoretical and Mathematical Physics, 2013, Volume 177, Issue 1, Pages 1352–1360
DOI: https://doi.org/10.1007/s11232-013-0108-z
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. G. Marikhin, “Quasi-Stäckel systems and two-dimensional Schrödinger equations in an electromagnetic field”, TMF, 177:1 (2013), 83–92; Theoret. and Math. Phys., 177:1 (2013), 1352–1360
Citation in format AMSBIB
\Bibitem{Mar13}
\by V.~G.~Marikhin
\paper Quasi-St\"ackel systems and two-dimensional Schr\"odinger equations in an~electromagnetic field
\jour TMF
\yr 2013
\vol 177
\issue 1
\pages 83--92
\mathnet{http://mi.mathnet.ru/tmf8540}
\crossref{https://doi.org/10.4213/tmf8540}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3230751}
\zmath{https://zbmath.org/?q=an:1298.81075}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...177.1352M}
\elib{https://elibrary.ru/item.asp?id=20732669}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 177
\issue 1
\pages 1352--1360
\crossref{https://doi.org/10.1007/s11232-013-0108-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000326625800003}
\elib{https://elibrary.ru/item.asp?id=21888425}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84887299837}
Linking options:
  • https://www.mathnet.ru/eng/tmf8540
  • https://doi.org/10.4213/tmf8540
  • https://www.mathnet.ru/eng/tmf/v177/i1/p83
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:451
    Full-text PDF :184
    References:56
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024