Abstract:
We study p-adic Gibbs quasimeasures for the Vannimenus model on the order-two Cayley tree. We especially address the problem of the boundedness of translation-invariant p-adic Gibbs quasimeasures. We also study periodic p-adic Gibbs quasimeasures.
Citation:
O. N. Khakimov, “p-Adic Gibbs quasimeasures for the Vannimenus model on a Cayley tree”, TMF, 179:1 (2014), 13–23; Theoret. and Math. Phys., 179:1 (2014), 395–404
\Bibitem{Kha14}
\by O.~N.~Khakimov
\paper $p$-Adic Gibbs quasimeasures for the~Vannimenus model on a~Cayley tree
\jour TMF
\yr 2014
\vol 179
\issue 1
\pages 13--23
\mathnet{http://mi.mathnet.ru/tmf8536}
\crossref{https://doi.org/10.4213/tmf8536}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3301496}
\zmath{https://zbmath.org/?q=an:1298.82011}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...179..395K}
\elib{https://elibrary.ru/item.asp?id=21826666}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 179
\issue 1
\pages 395--404
\crossref{https://doi.org/10.1007/s11232-014-0151-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000337055500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899928622}
Linking options:
https://www.mathnet.ru/eng/tmf8536
https://doi.org/10.4213/tmf8536
https://www.mathnet.ru/eng/tmf/v179/i1/p13
This publication is cited in the following 11 articles:
I. A. Sattarov, “Group Structure of the $p$-Adic Ball and Dynamical System of Isometry on a Sphere”, P-Adic Num Ultrametr Anal Appl, 16:2 (2024), 128
Tukhtabaev A., “On G(2)-Periodic Quasi Gibbs Measures of P-Adic Potts Model on a Cayley Tree”, P-Adic Numbers Ultrametric Anal. Appl., 13:4 (2021), 291–307
Khakimov O. Mukhamedov F., “Chaotic Behavior of the P-Adic Potts-Bethe Mapping II”, Ergod. Theory Dyn. Syst., 2021, PII S0143385721000961
Farrukh Mukhamedov, Otabek Khakimov, STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health, Advances in Non-Archimedean Analysis and Applications, 2021, 115
M. M. Rahmatullaev, O. N. Khakimov, A. M. Tukhtaboev, “A $p$-adic generalized Gibbs measure for the Ising model on a Cayley tree”, Theoret. and Math. Phys., 201:1 (2019), 1521–1530
M. Rahmatullaev, A. Tukhtabaev, “Non periodic p-adic generalized Gibbs measure for Ising model”, P-Adic Numbers Ultrametric Anal. Appl., 11:4 (2019), 319–327
M. Dogan, “Phase transition of mixed type $p$-adic $\lambda$-Ising model on Cayley tree”, P-Adic Numbers Ultrametric Anal. Appl., 10:4 (2018), 276–286
F. M. Mukhamedov, M. Kh. Saburov, O. N. Khakimov, “Translation-invariant $p$-adic quasi-Gibbs measures for the Ising–Vannimenus model on a Cayley tree”, Theoret. and Math. Phys., 187:1 (2016), 583–602
Mukhamedov F. Dogan M., “On P-Adic Lambda-Model on the Cayley Tree II: Phase Transitions”, Rep. Math. Phys., 75:1 (2015), 25–46
Farrukh Mukhamedov, Mansoor Saburov, Otabek Khakimov, “Onp-adic Ising–Vannimenus model on an arbitrary order Cayley tree”, J. Stat. Mech., 2015:5 (2015), P05032
Mukhamedov F., Dogan M., Akin H., “Phase Transition For the P-Adic Ising-Vannimenus Model on the Cayley Tree”, J. Stat. Mech.-Theory Exp., 2014, P10031