Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2013, Volume 177, Number 3, Pages 387–440
DOI: https://doi.org/10.4213/tmf8550
(Mi tmf8550)
 

This article is cited in 56 scientific papers (total in 56 papers)

Darboux transformations and recursion operators for differential–difference equations

F. Khanizadeha, A. V. Mikhailovb, Jing Ping Wanga

a School of Mathematics, Statistics and Actuarial Science, University of Kent, UK
b Applied Mathematics Department, University of Leeds, UK
References:
Abstract: We review two concepts directly related to the Lax representations of integrable systems: Darboux transformations and recursion operators. We present an extensive list of integrable differential–difference equations with their Hamiltonian structures, recursion operators, nontrivial generalized symmetries, and Darboux–Lax representations. The new results include multi-Hamiltonian structures and recursion operators for integrable Volterra-type equations and integrable discretizations of derivative nonlinear Schrödinger equations such as the Kaup–Newell, Chen–Lee–Liu, and Ablowitz–Ramani–Segur (Gerdjikov–Ivanov) lattices. We also compute the weakly nonlocal inverse recursion operators.
Keywords: symmetry, recursion operator, bi-Hamiltonian structure, Darboux transformation, Lax representation, integrable equation.
Received: 15.05.2013
English version:
Theoretical and Mathematical Physics, 2013, Volume 177, Issue 3, Pages 1606–1654
DOI: https://doi.org/10.1007/s11232-013-0124-z
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: F. Khanizadeh, A. V. Mikhailov, Jing Ping Wang, “Darboux transformations and recursion operators for differential–difference equations”, TMF, 177:3 (2013), 387–440; Theoret. and Math. Phys., 177:3 (2013), 1606–1654
Citation in format AMSBIB
\Bibitem{KhaMikWan13}
\by F.~Khanizadeh, A.~V.~Mikhailov, Jing~Ping~Wang
\paper Darboux transformations and recursion operators for differential--difference equations
\jour TMF
\yr 2013
\vol 177
\issue 3
\pages 387--440
\mathnet{http://mi.mathnet.ru/tmf8550}
\crossref{https://doi.org/10.4213/tmf8550}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3136087}
\zmath{https://zbmath.org/?q=an:1301.37041}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...177.1606K}
\elib{https://elibrary.ru/item.asp?id=21277088}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 177
\issue 3
\pages 1606--1654
\crossref{https://doi.org/10.1007/s11232-013-0124-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329318200002}
\elib{https://elibrary.ru/item.asp?id=22061599}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84891676537}
Linking options:
  • https://www.mathnet.ru/eng/tmf8550
  • https://doi.org/10.4213/tmf8550
  • https://www.mathnet.ru/eng/tmf/v177/i3/p387
  • This publication is cited in the following 56 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:983
    Full-text PDF :406
    References:99
    First page:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024