Abstract:
We consider the problem of constructing a formal asymptotic expansion in the spectral parameter for an eigenfunction of a discrete linear operator. We propose a method for constructing an expansion that allows obtaining conservation laws of discrete dynamical systems associated with a given linear operator. As illustrative examples, we consider known nonlinear models such as the discrete potential Korteweg–de Vries equation, the discrete version of the derivative nonlinear Schrödinger equation, the Veselov–Shabat dressing chain, and others. We describe the infinite set of conservation laws for the discrete Toda chain corresponding to the Lie algebra A(1)1A(1)1. We find new examples of integrable systems of equations on a square lattice.
Keywords:
Lax pair, asymptotic expansion, conservation law, symmetry, equations on a quad graph, discrete nonlinear Schrödinger equation, dressing method.
Citation:
I. T. Habibullin, M. V. Yangubaeva, “Formal diagonalization of a discrete Lax operator and conservation laws and symmetries of dynamical systems”, TMF, 177:3 (2013), 441–467; Theoret. and Math. Phys., 177:3 (2013), 1655–1679
\Bibitem{HabYan13}
\by I.~T.~Habibullin, M.~V.~Yangubaeva
\paper Formal diagonalization of a~discrete Lax operator and conservation laws and symmetries of dynamical systems
\jour TMF
\yr 2013
\vol 177
\issue 3
\pages 441--467
\mathnet{http://mi.mathnet.ru/tmf8581}
\crossref{https://doi.org/10.4213/tmf8581}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3253977}
\zmath{https://zbmath.org/?q=an:1301.35150}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...177.1655H}
\elib{https://elibrary.ru/item.asp?id=21277089}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 177
\issue 3
\pages 1655--1679
\crossref{https://doi.org/10.1007/s11232-013-0125-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329318200003}
\elib{https://elibrary.ru/item.asp?id=21906000}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84891710330}
Linking options:
https://www.mathnet.ru/eng/tmf8581
https://doi.org/10.4213/tmf8581
https://www.mathnet.ru/eng/tmf/v177/i3/p441
This publication is cited in the following 14 articles:
Habibullin I. Khakimova A., “Integrable Boundary Conditions For the Hirota-Miwa Equation and Lie Algebras”, J. Nonlinear Math. Phys., 27:3 (2020), 393–413
R. N. Garifullin, R. I. Yamilov, “An unusual series of autonomous discrete integrable equations on a square lattice”, Theoret. and Math. Phys., 200:1 (2019), 966–984
Habibullin I.T. Khakimova A.R., “Discrete Exponential Type Systems on a Quad Graph, Corresponding to the Affine Lie Algebras a(N)(-1)((1) )”, J. Phys. A-Math. Theor., 52:36 (2019), 365202
R. N. Garifullin, R. I. Yamilov, “On the Integrability of a Lattice Equation with Two Continuum Limits”, J. Math. Sci. (N. Y.), 252:2 (2021), 283–289
S. Lou, Y. Shi, D.-J. Zhang, “Spectrum transformation and conservation laws of lattice potential KdV equation”, Front. Math. China, 12:2 (2017), 403–416
Ufa Math. J., 9:3 (2017), 158–164
E. V. Pavlova, I. T. Habibullin, A. R. Khakimova, “On one integrable discrete system”, J. Math. Sci. (N. Y.), 241:4 (2019), 409–422
I. T. Habibullin, A. R. Khakimova, M. N. Poptsova, “On a method for constructing the Lax pairs for nonlinear integrable equations”, J. Phys. A-Math. Theor., 49:3 (2016), 035202
M. N. Poptsova, I. T. Habibullin, “Symmetries and conservation laws for a two-component discrete potentiated Korteweg–de Vries equation”, Ufa Math. J., 8:3 (2016), 109–121
I. T. Habibullin, M. N. Poptsova, “Asymptotic diagonalization of the discrete Lax pair around singularities and conservation laws for dynamical systems”, J. Phys. A-Math. Theor., 48:11 (2015), 115203
A. V. Mikhailov, “Formal diagonalisation of Lax–Darboux schemes”, Model. i analiz inform. sistem, 22:6 (2015), 795–817
Rustem N Garifullin, Ravil I Yamilov, “Integrable discrete nonautonomous quad-equations as Bäcklund auto-transformations for known Volterra and Toda type semidiscrete equations”, J. Phys.: Conf. Ser., 621 (2015), 012005
R N Garifullin, I T Habibullin, R I Yamilov, “Peculiar symmetry structure of some known discrete nonautonomous equations”, J. Phys. A: Math. Theor., 48:23 (2015), 235201
R. N. Garifullin, A. V. Mikhailov, R. I. Yamilov, “Discrete equation on a square lattice with a nonstandard structure of generalized symmetries”, Theoret. and Math. Phys., 180:1 (2014), 765–780