Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2013, Volume 177, Number 3, Pages 441–467
DOI: https://doi.org/10.4213/tmf8581
(Mi tmf8581)
 

This article is cited in 14 scientific papers (total in 14 papers)

Formal diagonalization of a discrete Lax operator and conservation laws and symmetries of dynamical systems

I. T. Habibullin, M. V. Yangubaeva

Institute of Mathematics with Computing Center, Ufa Science Center, RAS, Ufa, Russia
References:
Abstract: We consider the problem of constructing a formal asymptotic expansion in the spectral parameter for an eigenfunction of a discrete linear operator. We propose a method for constructing an expansion that allows obtaining conservation laws of discrete dynamical systems associated with a given linear operator. As illustrative examples, we consider known nonlinear models such as the discrete potential Korteweg–de Vries equation, the discrete version of the derivative nonlinear Schrödinger equation, the Veselov–Shabat dressing chain, and others. We describe the infinite set of conservation laws for the discrete Toda chain corresponding to the Lie algebra A(1)1A(1)1. We find new examples of integrable systems of equations on a square lattice.
Keywords: Lax pair, asymptotic expansion, conservation law, symmetry, equations on a quad graph, discrete nonlinear Schrödinger equation, dressing method.
Received: 24.07.2013
Revised: 16.08.2013
English version:
Theoretical and Mathematical Physics, 2013, Volume 177, Issue 3, Pages 1655–1679
DOI: https://doi.org/10.1007/s11232-013-0125-y
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. T. Habibullin, M. V. Yangubaeva, “Formal diagonalization of a discrete Lax operator and conservation laws and symmetries of dynamical systems”, TMF, 177:3 (2013), 441–467; Theoret. and Math. Phys., 177:3 (2013), 1655–1679
Citation in format AMSBIB
\Bibitem{HabYan13}
\by I.~T.~Habibullin, M.~V.~Yangubaeva
\paper Formal diagonalization of a~discrete Lax operator and conservation laws and symmetries of dynamical systems
\jour TMF
\yr 2013
\vol 177
\issue 3
\pages 441--467
\mathnet{http://mi.mathnet.ru/tmf8581}
\crossref{https://doi.org/10.4213/tmf8581}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3253977}
\zmath{https://zbmath.org/?q=an:1301.35150}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...177.1655H}
\elib{https://elibrary.ru/item.asp?id=21277089}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 177
\issue 3
\pages 1655--1679
\crossref{https://doi.org/10.1007/s11232-013-0125-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329318200003}
\elib{https://elibrary.ru/item.asp?id=21906000}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84891710330}
Linking options:
  • https://www.mathnet.ru/eng/tmf8581
  • https://doi.org/10.4213/tmf8581
  • https://www.mathnet.ru/eng/tmf/v177/i3/p441
  • This publication is cited in the following 14 articles:
    1. Habibullin I. Khakimova A., “Integrable Boundary Conditions For the Hirota-Miwa Equation and Lie Algebras”, J. Nonlinear Math. Phys., 27:3 (2020), 393–413  crossref  mathscinet  isi
    2. R. N. Garifullin, R. I. Yamilov, “An unusual series of autonomous discrete integrable equations on a square lattice”, Theoret. and Math. Phys., 200:1 (2019), 966–984  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. Habibullin I.T. Khakimova A.R., “Discrete Exponential Type Systems on a Quad Graph, Corresponding to the Affine Lie Algebras a(N)(-1)((1) )”, J. Phys. A-Math. Theor., 52:36 (2019), 365202  crossref  mathscinet  isi
    4. R. N. Garifullin, R. I. Yamilov, “On the Integrability of a Lattice Equation with Two Continuum Limits”, J. Math. Sci. (N. Y.), 252:2 (2021), 283–289  mathnet  crossref  mathscinet
    5. S. Lou, Y. Shi, D.-J. Zhang, “Spectrum transformation and conservation laws of lattice potential KdV equation”, Front. Math. China, 12:2 (2017), 403–416  crossref  mathscinet  zmath  isi  scopus
    6. Ufa Math. J., 9:3 (2017), 158–164  mathnet  crossref  mathscinet  isi  elib  elib
    7. E. V. Pavlova, I. T. Habibullin, A. R. Khakimova, “On one integrable discrete system”, J. Math. Sci. (N. Y.), 241:4 (2019), 409–422  mathnet  mathnet  crossref
    8. I. T. Habibullin, A. R. Khakimova, M. N. Poptsova, “On a method for constructing the Lax pairs for nonlinear integrable equations”, J. Phys. A-Math. Theor., 49:3 (2016), 035202  crossref  mathscinet  zmath  adsnasa  isi  scopus
    9. M. N. Poptsova, I. T. Habibullin, “Symmetries and conservation laws for a two-component discrete potentiated Korteweg–de Vries equation”, Ufa Math. J., 8:3 (2016), 109–121  mathnet  crossref  mathscinet  isi  elib
    10. I. T. Habibullin, M. N. Poptsova, “Asymptotic diagonalization of the discrete Lax pair around singularities and conservation laws for dynamical systems”, J. Phys. A-Math. Theor., 48:11 (2015), 115203  crossref  mathscinet  zmath  adsnasa  isi  scopus
    11. A. V. Mikhailov, “Formal diagonalisation of Lax–Darboux schemes”, Model. i analiz inform. sistem, 22:6 (2015), 795–817  mathnet  crossref  mathscinet  elib
    12. Rustem N Garifullin, Ravil I Yamilov, “Integrable discrete nonautonomous quad-equations as Bäcklund auto-transformations for known Volterra and Toda type semidiscrete equations”, J. Phys.: Conf. Ser., 621 (2015), 012005  crossref
    13. R N Garifullin, I T Habibullin, R I Yamilov, “Peculiar symmetry structure of some known discrete nonautonomous equations”, J. Phys. A: Math. Theor., 48:23 (2015), 235201  crossref
    14. R. N. Garifullin, A. V. Mikhailov, R. I. Yamilov, “Discrete equation on a square lattice with a nonstandard structure of generalized symmetries”, Theoret. and Math. Phys., 180:1 (2014), 765–780  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:759
    Full-text PDF :257
    References:138
    First page:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025