Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2013, Volume 177, Number 3, Pages 355–386
DOI: https://doi.org/10.4213/tmf8462
(Mi tmf8462)
 

This article is cited in 30 scientific papers (total in 30 papers)

New formulas for Maslov's canonical operator in a neighborhood of focal points and caustics in two-dimensional semiclassical asymptotics

S. Yu. Dobrokhotovab, G. N. Makrakiscd, V. E. Nazaikinskiiab, T. Ya. Tudorovskiie

a Ishlinsky Institute for Problems in Mechanics, Moscow, Russia
b Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Oblast, Russia
c Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
d Department of Mathematics and Applied Mathematics, University of Crete, Crete, Greece
e Radboud University Nijmegen, Institute for Molecules and Materials, Nijmegen, The Netherlands
References:
Abstract: We suggest a new representation of Maslov's canonical operator in a neighborhood of caustics using a special class of coordinate systems (eikonal coordinates) on Lagrangian manifolds. We present the results in the two-dimensional case and illustrate them with examples.
Keywords: semiclassical asymptotics, focal point, caustic, integral representation, Bessel function, Schrödinger equation, wave beam.
Received: 24.12.2012
Revised: 24.07.2013
English version:
Theoretical and Mathematical Physics, 2013, Volume 177, Issue 3, Pages 1579–1605
DOI: https://doi.org/10.1007/s11232-013-0123-0
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. Yu. Dobrokhotov, G. N. Makrakis, V. E. Nazaikinskii, T. Ya. Tudorovskii, “New formulas for Maslov's canonical operator in a neighborhood of focal points and caustics in two-dimensional semiclassical asymptotics”, TMF, 177:3 (2013), 355–386; Theoret. and Math. Phys., 177:3 (2013), 1579–1605
Citation in format AMSBIB
\Bibitem{DobMakNaz13}
\by S.~Yu.~Dobrokhotov, G.~N.~Makrakis, V.~E.~Nazaikinskii, T.~Ya.~Tudorovskii
\paper New formulas for Maslov's canonical operator in a~neighborhood of focal points and caustics in two-dimensional semiclassical asymptotics
\jour TMF
\yr 2013
\vol 177
\issue 3
\pages 355--386
\mathnet{http://mi.mathnet.ru/tmf8462}
\crossref{https://doi.org/10.4213/tmf8462}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3253975}
\zmath{https://zbmath.org/?q=an:1298.81091}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...177.1579D}
\elib{https://elibrary.ru/item.asp?id=21277087}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 177
\issue 3
\pages 1579--1605
\crossref{https://doi.org/10.1007/s11232-013-0123-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329318200001}
\elib{https://elibrary.ru/item.asp?id=21905877}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84891676049}
Linking options:
  • https://www.mathnet.ru/eng/tmf8462
  • https://doi.org/10.4213/tmf8462
  • https://www.mathnet.ru/eng/tmf/v177/i3/p355
  • This publication is cited in the following 30 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:875
    Full-text PDF :297
    References:76
    First page:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024