|
This article is cited in 1 scientific paper (total in 2 paper)
Reflection matrices from Hadamard-type Temperley–Lieb $R$-matrices
J. Avana, P. P. Kulishb, G. Rolleta a Laboratoire de Physique Théorique et Modélisation,
Université de Cergy-Pontoise, Cergy-Pontoise, France
b St. Petersburg Department of the Steklov Institute of
Mathematics, St. Petersburg, Russia
Abstract:
We classify nonoperatorial matrices $K$ solving the Skylanin quantum reflection equation for all $R$-matrices obtained from the newly defined general rank-$n$ Hadamard-type representations of the Temperley–Lieb algebra $TL_N(\sqrt{n})$. They are characterized by a universal set of algebraic equations in a specific canonical basis uniquely defined by the “master matrix” associated with the chosen realization of the Temperley–Lieb algebra.
Keywords:
reflection equation, Yang–Baxter equation, Temperley–Lieb algebra.
Received: 07.11.2013
Citation:
J. Avan, P. P. Kulish, G. Rollet, “Reflection matrices from Hadamard-type Temperley–Lieb $R$-matrices”, TMF, 179:1 (2014), 3–12; Theoret. and Math. Phys., 179:1 (2014), 387–394
Linking options:
https://www.mathnet.ru/eng/tmf8609https://doi.org/10.4213/tmf8609 https://www.mathnet.ru/eng/tmf/v179/i1/p3
|
Statistics & downloads: |
Abstract page: | 486 | Full-text PDF : | 216 | References: | 100 | First page: | 59 |
|