Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2004, Volume 140, Number 1, Pages 100–112
DOI: https://doi.org/10.4213/tmf81
(Mi tmf81)
 

This article is cited in 3 scientific papers (total in 3 papers)

An Algebraic Method for the Exact Solution of the Partition Function of the Canonical Ensemble in Nuclear Multifragmentation

A. S. Parvanab

a Joint Institute for Nuclear Research
b Institute of Applied Physics Academy of Sciences of Moldova
Full-text PDF (229 kB) Citations (3)
References:
Abstract: We propose a unified method for deducing recursive relations for the canonical partition function of a system of noninteracting particles with charge conservation if the particles follow the Bose–Einstein, Fermi–Dirac, or Maxwell–Boltzmann statistics or parastatistics. For all these types of statistics, we find recursive relations for the partition function of a new statistical model of nuclear multifragmentation with electric charge and baryon number conservation, accounting for the internal degrees of freedom of the nuclear fragments.
Keywords: canonical partition function, quantum statistics, recursive relations, nuclear multifragmentation.
Received: 12.03.2003
Revised: 09.07.2003
English version:
Theoretical and Mathematical Physics, 2004, Volume 140, Issue 1, Pages 977–986
DOI: https://doi.org/10.1023/B:TAMP.0000033034.38474.cc
Bibliographic databases:
Language: Russian
Citation: A. S. Parvan, “An Algebraic Method for the Exact Solution of the Partition Function of the Canonical Ensemble in Nuclear Multifragmentation”, TMF, 140:1 (2004), 100–112; Theoret. and Math. Phys., 140:1 (2004), 977–986
Citation in format AMSBIB
\Bibitem{Par04}
\by A.~S.~Parvan
\paper An Algebraic Method for the Exact Solution of the Partition Function of the Canonical Ensemble in Nuclear Multifragmentation
\jour TMF
\yr 2004
\vol 140
\issue 1
\pages 100--112
\mathnet{http://mi.mathnet.ru/tmf81}
\crossref{https://doi.org/10.4213/tmf81}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2110895}
\zmath{https://zbmath.org/?q=an:1178.82009}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004TMP...140..977P}
\transl
\jour Theoret. and Math. Phys.
\yr 2004
\vol 140
\issue 1
\pages 977--986
\crossref{https://doi.org/10.1023/B:TAMP.0000033034.38474.cc}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000223573800008}
Linking options:
  • https://www.mathnet.ru/eng/tmf81
  • https://doi.org/10.4213/tmf81
  • https://www.mathnet.ru/eng/tmf/v140/i1/p100
  • This publication is cited in the following 3 articles:
    1. Parvan A.S., Bhattacharyya T., “Remarks on the Phenomenological Tsallis Distributions and Their Link With the Tsallis Statistics”, J. Phys. A-Math. Theor., 54:32 (2021), 325004  crossref  mathscinet  isi
    2. Parvan A.S., “Critique of multinomial coefficients method for evaluating Tsallis and Renyi entropies”, Physica a-Statistical Mechanics and its Applications, 389:24 (2010), 5645–5649  crossref  mathscinet  adsnasa  isi  scopus  scopus
    3. Toneev VD, Parvan AS, “Canonical strangeness and distillation effects in hadron production”, Journal of Physics G-Nuclear and Particle Physics, 31:7 (2005), 583–597  crossref  adsnasa  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:371
    Full-text PDF :180
    References:65
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025