Abstract:
We study the hard-core model on the Cayley tree. We show that this model admits only periodic Gibbs measures with the period two. We find sufficient conditions for all weakly periodic Gibbs measures to be translation invariant.
Citation:
U. A. Rozikov, R. M. Khakimov, “The uniqueness condition for a weakly periodic Gibbs measure for the hard-core model”, TMF, 173:1 (2012), 60–70; Theoret. and Math. Phys., 173:1 (2012), 1377–1386
This publication is cited in the following 7 articles:
U. A. Rozikov, R. M. Khakimov, M. T. Makhammadaliev, “Gibbs Periodic Measures for a Two-State HC-Model on a Cayley Tree”, J Math Sci, 278:4 (2024), 647
U. A. Rozikov, R. M. Khakimov, M. T. Makhammadaliev, “Periodicheskie mery Gibbsa dlya NS-modeli s dvumya sostoyaniyami na dereve Keli”, Nauka — tekhnologiya — obrazovanie — matematika — meditsina, SMFN, 68, no. 1, Rossiiskii universitet druzhby narodov, M., 2022, 95–109
R. M. Khakimov, M. T. Makhammadaliev, “Uniqueness and nonuniqueness conditions for weakly periodic Gibbs measures for the hard-core model”, Theoret. and Math. Phys., 204:2 (2020), 1059–1078
R. M. Khakimov, “Weakly periodic Gibbs measures for HC-models on Cayley trees”, Siberian Math. J., 59:1 (2018), 147–156
R. M. Khakimov, “Gibbs measures for fertile hard-core models on the Cayley tree”, Theoret. and Math. Phys., 186:2 (2016), 294–305
R. M. Khakimov, F. Kh. Khaidarov, “Translation-invariant and periodic Gibbs measures for the Potts model on a Cayley tree”, Theoret. and Math. Phys., 189:2 (2016), 1651–1659
R. M. Khakimov, “Weakly Periodic Gibbs Measures in the HC-Model for a Normal Divisor of Index Four”, Ukr Math J, 67:10 (2016), 1584