Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2012, Volume 173, Number 1, Pages 71–88
DOI: https://doi.org/10.4213/tmf6921
(Mi tmf6921)
 

This article is cited in 3 scientific papers (total in 3 papers)

The Fibonacci fractal is a new fractal type

V. V. Yudin, E. S. Startsev

Institute for Physics and Information Technologies, Far-East Federal University, Vladivostok, Russia
Full-text PDF (605 kB) Citations (3)
References:
Abstract: We propose a uniform method for estimating fractal characteristics of systems satisfying some type of scaling principle. This method is based on representing such systems as generating Bethe–Cayley tree graphs. These graphs appear from the formalism of the group bundle of Fibonacci–Penrose inverse semigroups. We consistently consider the standard schemes of Cantor and Koch in the new method. We prove the fractal property of the proper Fibonacci system, which has neither a negative nor a positive redundancy type. We illustrate the Fibonacci fractal by an original procedure and in the coordinate representation. The golden ratio and specific inversion property intrinsic to the Fibonacci system underlie the Fibonacci fractal. This property is reflected in the structure of the Fibonacci generator.
Keywords: Fibonacci fractal, Cantor fractal, Koch fractal, generating tree graph, scaling, Koch generator, Cantor generator.
Received: 02.06.2011
Revised: 21.11.2011
English version:
Theoretical and Mathematical Physics, 2012, Volume 173, Issue 1, Pages 1387–1402
DOI: https://doi.org/10.1007/s11232-012-0121-7
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. V. Yudin, E. S. Startsev, “The Fibonacci fractal is a new fractal type”, TMF, 173:1 (2012), 71–88; Theoret. and Math. Phys., 173:1 (2012), 1387–1402
Citation in format AMSBIB
\Bibitem{YudSta12}
\by V.~V.~Yudin, E.~S.~Startsev
\paper The~Fibonacci fractal is a~new fractal type
\jour TMF
\yr 2012
\vol 173
\issue 1
\pages 71--88
\mathnet{http://mi.mathnet.ru/tmf6921}
\crossref{https://doi.org/10.4213/tmf6921}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3171537}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...173.1387Y}
\elib{https://elibrary.ru/item.asp?id=20732533}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 173
\issue 1
\pages 1387--1402
\crossref{https://doi.org/10.1007/s11232-012-0121-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000310831700004}
\elib{https://elibrary.ru/item.asp?id=20490772}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84869047688}
Linking options:
  • https://www.mathnet.ru/eng/tmf6921
  • https://doi.org/10.4213/tmf6921
  • https://www.mathnet.ru/eng/tmf/v173/i1/p71
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:785
    Full-text PDF :563
    References:72
    First page:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024