Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2012, Volume 173, Number 1, Pages 38–59
DOI: https://doi.org/10.4213/tmf8332
(Mi tmf8332)
 

This article is cited in 8 scientific papers (total in 8 papers)

Generalized Weyl correspondence and Moyal multiplier algebras

M. A. Soloviev

Lebedev Physical Institute, RAS, Russia
Full-text PDF (585 kB) Citations (8)
References:
Abstract: We show that the Weyl correspondence and the concept of a Moyal multiplier can be naturally extended to generalized function classes that are larger than the class of tempered distributions. This generalization is motivated by possible applications to noncommutative quantum field theory. We prove that under reasonable restrictions on the test function space $E\subset L^2$, any operator in $L^2$ with a domain $E$ and continuous in the topologies of $E$ and $L^2$ has a Weyl symbol, which is defined as a generalized function on the Wigner–Moyal transform of the projective tensor square of $E$. We also give an exact characterization of the Weyl transforms of the Moyal multipliers for the Gel'fand–Shilov spaces $S^\beta_\beta$.
Keywords: Weyl symbol, star product, Wigner–Moyal transform, Weyl–Heisenberg group, noncommutative field theory, topological $*$-algebra, generalized function.
Received: 28.02.2012
English version:
Theoretical and Mathematical Physics, 2012, Volume 173, Issue 1, Pages 1359–1376
DOI: https://doi.org/10.1007/s11232-012-0119-1
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. A. Soloviev, “Generalized Weyl correspondence and Moyal multiplier algebras”, TMF, 173:1 (2012), 38–59; Theoret. and Math. Phys., 173:1 (2012), 1359–1376
Citation in format AMSBIB
\Bibitem{Sol12}
\by M.~A.~Soloviev
\paper Generalized Weyl correspondence and Moyal multiplier algebras
\jour TMF
\yr 2012
\vol 173
\issue 1
\pages 38--59
\mathnet{http://mi.mathnet.ru/tmf8332}
\crossref{https://doi.org/10.4213/tmf8332}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3171535}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...173.1359S}
\elib{https://elibrary.ru/item.asp?id=20732530}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 173
\issue 1
\pages 1359--1376
\crossref{https://doi.org/10.1007/s11232-012-0119-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000310831700002}
\elib{https://elibrary.ru/item.asp?id=20490601}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84869022786}
Linking options:
  • https://www.mathnet.ru/eng/tmf8332
  • https://doi.org/10.4213/tmf8332
  • https://www.mathnet.ru/eng/tmf/v173/i1/p38
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:441
    Full-text PDF :186
    References:76
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024