Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2012, Volume 173, Number 1, Pages 89–103
DOI: https://doi.org/10.4213/tmf6947
(Mi tmf6947)
 

This article is cited in 19 scientific papers (total in 19 papers)

Solution of a nonlinear Schrödinger equation in the form of two-phase freak waves

A. O. Smirnov

St.~Petersburg State University of Aerospace Instrumentation, St. Petersburg, Russia
References:
Abstract: We construct a family of two-gap solutions of the focusing nonlinear Schrödinger equation and derive a condition under which the solutions behave as the so-called freak waves located at the nodes of a two-dimensional lattice. We also study how the lattice parameters depend on the parameters of the spectral curve.
Keywords: rogue wave, freak wave, nonlinear Schrödinger equation, theta function, reduction, covering.
Received: 13.01.2012
Revised: 10.03.2012
English version:
Theoretical and Mathematical Physics, 2012, Volume 173, Issue 1, Pages 1403–1416
DOI: https://doi.org/10.1007/s11232-012-0122-6
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. O. Smirnov, “Solution of a nonlinear Schrödinger equation in the form of two-phase freak waves”, TMF, 173:1 (2012), 89–103; Theoret. and Math. Phys., 173:1 (2012), 1403–1416
Citation in format AMSBIB
\Bibitem{Smi12}
\by A.~O.~Smirnov
\paper Solution of a~nonlinear Schr\"odinger equation in the~form of two-phase
freak waves
\jour TMF
\yr 2012
\vol 173
\issue 1
\pages 89--103
\mathnet{http://mi.mathnet.ru/tmf6947}
\crossref{https://doi.org/10.4213/tmf6947}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2928755}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...173.1403S}
\elib{https://elibrary.ru/item.asp?id=20732534}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 173
\issue 1
\pages 1403--1416
\crossref{https://doi.org/10.1007/s11232-012-0122-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000310831700005}
\elib{https://elibrary.ru/item.asp?id=20491534}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84869057658}
Linking options:
  • https://www.mathnet.ru/eng/tmf6947
  • https://doi.org/10.4213/tmf6947
  • https://www.mathnet.ru/eng/tmf/v173/i1/p89
  • This publication is cited in the following 19 articles:
    1. Ruomeng Li, Jingru Geng, Xianguo Geng, “Breather and rogue-wave solutions of the semi-discrete and continuous nonlinear Schrödinger equations on theta-function backgrounds”, Nonlinearity, 38:1 (2025), 015012  crossref
    2. Natanael Karjanto, “Modeling Wave Packet Dynamics and Exploring Applications: A Comprehensive Guide to the Nonlinear Schrödinger Equation”, Mathematics, 12:5 (2024), 744  crossref
    3. Liuyi Pan, Lei Wang, Lei Liu, Wenrong Sun, Xiaoxia Ren, “Non-degenerate localised waves beyond Manakov system and their new perspectives”, Nonlinearity, 37:10 (2024), 105016  crossref
    4. A. O. Smirnov, V. B. Matveev, “Finite-gap solutions of nonlocal equations in Ablowitz-Kaup-Newell-Segur hierarchy”, Ufa Math. J., 13:2 (2021), 81–98  mathnet  crossref  isi
    5. Pelinovsky D.E., “Instability of Double-Periodic Waves in the Nonlinear Schrodinger Equation”, Front. Physics, 9 (2021), 599146  crossref  isi
    6. V. B. Matveev, A. O. Smirnov, “Elliptic solitons and «freak waves»”, St. Petersburg Math. J., 33:3 (2022), 523–551  mathnet  crossref
    7. T. V. Redkina, O. V. Novikova, “Primenenie differentsialnykh svyazei Beklunda dlya postroeniya tochnykh reshenii nelineinykh giperbolicheskikh uravnenii”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2020, no. 3, 54–67  mathnet  crossref
    8. P. G. Grinevich, P. M. Santini, “The finite-gap method and the periodic NLS Cauchy problem of anomalous waves for a finite number of unstable modes”, Russian Math. Surveys, 74:2 (2019), 211–263  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. Chen J. Pelinovsky D.E. White R.E., “Rogue Waves on the Double-Periodic Background in the Focusing Nonlinear Schrodinger Equation”, Phys. Rev. E, 100:5 (2019), 052219  crossref  mathscinet  isi
    10. Pierre GAİLLARD, “Differential Relations for the Solutions to the NLS Equation and Their Different Representations”, Communications in Advanced Mathematical Sciences, 2:4 (2019), 235  crossref
    11. V. B. Matveev, A. O. Smirnov, “Two-phase periodic solutions to the AKNS hierarchy equations”, J. Math. Sci. (N. Y.), 242:5 (2019), 722–741  mathnet  crossref
    12. Bertrand Kibler, Shaping Light in Nonlinear Optical Fibers, 2017, 293  crossref
    13. V. B. Matveev, A. O. Smirnov, “Solutions of the Ablowitz–Kaup–Newell–Segur hierarchy equations of the “rogue wave” type: A unified approach”, Theoret. and Math. Phys., 186:2 (2016), 156–182  mathnet  crossref  crossref  mathscinet  isi  elib
    14. Zhao H.-H. Zhao X.-J. Guo R., “Periodic solutions, breathers and rogue waves in a generalized coupled Hirota system”, Optik, 127:20 (2016), 9295–9304  crossref  mathscinet  isi  elib  scopus
    15. Aleksandr O. Smirnov, Sergei G. Matveenko, Sergei K. Semenov, Elena G. Semenova, “Three-Phase Freak Waves”, SIGMA, 11 (2015), 032, 14 pp.  mathnet  crossref  mathscinet
    16. Chabalko Ch. Moitra A. Balachandran B., “Rogue Waves: New Forms Enabled By Gpu Computing”, Phys. Lett. A, 378:32-33 (2014), 2377–2381  crossref  zmath  adsnasa  isi
    17. Dubinov A.E., Kitayev I.N., “Nonlinear Multiplicative Ion-Plasma Oscillations”, Phys. Wave Phenom., 22:1 (2014), 52–55  crossref  adsnasa  isi  elib
    18. A. O. Smirnov, G. M. Golovachev, “Trekhfaznye resheniya nelineinogo uravneniya Shredingera v ellipticheskikh funktsiyakh”, Nelineinaya dinam., 9:3 (2013), 389–407  mathnet
    19. Priya N.V., Senthilvelan M., Lakshmanan M., “Akhmediev Breathers, Ma Solitons, and General Breathers From Rogue Waves: a Case Study in the Manakov System”, Phys. Rev. E, 88:2 (2013), 022918  crossref  mathscinet  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:907
    Full-text PDF :415
    References:77
    First page:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025