Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 169, Number 2, Pages 204–217
DOI: https://doi.org/10.4213/tmf6722
(Mi tmf6722)
 

This article is cited in 4 scientific papers (total in 4 papers)

The $R$-matrix factorization, $Q$-operator, and variable separation in the case of the $XXX$ spin chain with the $SL(2,\mathbb{C})$ symmetry group

S. È. Derkachev

St. Petersburg Department of the Steklov Institute of Mathematics, RAS, St. Petersburg, Russia
Full-text PDF (584 kB) Citations (4)
References:
Abstract: We show a connection between the $R$-matrix factorization, the Baxter $Q$-operator, and separation of variables in the example of an integrable spin chain with the $SL(2,\mathbb{C})$ symmetry group.
Keywords: Yang–Baxter equation, $Q$-operator, separation of variables.
Received: 19.11.2011
English version:
Theoretical and Mathematical Physics, 2011, Volume 169, Issue 2, Pages 1539–1550
DOI: https://doi.org/10.1007/s11232-011-0131-x
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. È. Derkachev, “The $R$-matrix factorization, $Q$-operator, and variable separation in the case of the $XXX$ spin chain with the $SL(2,\mathbb{C})$ symmetry group”, TMF, 169:2 (2011), 204–217; Theoret. and Math. Phys., 169:2 (2011), 1539–1550
Citation in format AMSBIB
\Bibitem{Der11}
\by S.~\`E.~Derkachev
\paper The~$R$-matrix factorization, $Q$-operator, and variable separation
in the~case of the~$XXX$ spin chain with the~$SL(2,\mathbb{C})$ symmetry group
\jour TMF
\yr 2011
\vol 169
\issue 2
\pages 204--217
\mathnet{http://mi.mathnet.ru/tmf6722}
\crossref{https://doi.org/10.4213/tmf6722}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3171184}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...169.1539D}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 169
\issue 2
\pages 1539--1550
\crossref{https://doi.org/10.1007/s11232-011-0131-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000297912700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83055179508}
Linking options:
  • https://www.mathnet.ru/eng/tmf6722
  • https://doi.org/10.4213/tmf6722
  • https://www.mathnet.ru/eng/tmf/v169/i2/p204
  • This publication is cited in the following 4 articles:
    1. Xue Geng, Dianlou Du, Xianguo Geng, “Action-angle variables for the Lie–Poisson Hamiltonian systems associated with the Hirota–Satsuma modified Boussinesq equation”, Front. Phys., 11 (2023)  crossref
    2. Samuel Belliard, Nikita A. Slavnov, “Scalar Products in Twisted XXX Spin Chain. Determinant Representation”, SIGMA, 15 (2019), 066, 30 pp.  mathnet  crossref  mathscinet
    3. Samuel Belliard, Nikita A. Slavnov, Benoit Vallet, “Modified Algebraic Bethe Ansatz: Twisted XXX Case”, SIGMA, 14 (2018), 054, 18 pp.  mathnet  crossref  mathscinet
    4. Samuel Belliard, Rodrigo A. Pimenta, “Slavnov and Gaudin–Korepin Formulas for Models without $\mathrm{U}(1)$ Symmetry: the Twisted XXX Chain”, SIGMA, 11 (2015), 099, 12 pp.  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:529
    Full-text PDF :263
    References:81
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025