Abstract:
We show a connection between the $R$-matrix factorization, the Baxter $Q$-operator, and separation of variables in the example of an integrable spin chain with the $SL(2,\mathbb{C})$ symmetry group.
Keywords:
Yang–Baxter equation, $Q$-operator, separation of variables.
Citation:
S. È. Derkachev, “The $R$-matrix factorization, $Q$-operator, and variable separation
in the case of the $XXX$ spin chain with the $SL(2,\mathbb{C})$ symmetry group”, TMF, 169:2 (2011), 204–217; Theoret. and Math. Phys., 169:2 (2011), 1539–1550
\Bibitem{Der11}
\by S.~\`E.~Derkachev
\paper The~$R$-matrix factorization, $Q$-operator, and variable separation
in the~case of the~$XXX$ spin chain with the~$SL(2,\mathbb{C})$ symmetry group
\jour TMF
\yr 2011
\vol 169
\issue 2
\pages 204--217
\mathnet{http://mi.mathnet.ru/tmf6722}
\crossref{https://doi.org/10.4213/tmf6722}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3171184}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...169.1539D}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 169
\issue 2
\pages 1539--1550
\crossref{https://doi.org/10.1007/s11232-011-0131-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000297912700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83055179508}
Linking options:
https://www.mathnet.ru/eng/tmf6722
https://doi.org/10.4213/tmf6722
https://www.mathnet.ru/eng/tmf/v169/i2/p204
This publication is cited in the following 4 articles:
Xue Geng, Dianlou Du, Xianguo Geng, “Action-angle variables for the Lie–Poisson Hamiltonian systems associated with the Hirota–Satsuma modified Boussinesq equation”, Front. Phys., 11 (2023)
Samuel Belliard, Nikita A. Slavnov, “Scalar Products in Twisted XXX Spin Chain. Determinant Representation”, SIGMA, 15 (2019), 066, 30 pp.
Samuel Belliard, Nikita A. Slavnov, Benoit Vallet, “Modified Algebraic Bethe Ansatz: Twisted XXX Case”, SIGMA, 14 (2018), 054, 18 pp.
Samuel Belliard, Rodrigo A. Pimenta, “Slavnov and Gaudin–Korepin Formulas for Models without $\mathrm{U}(1)$ Symmetry: the Twisted XXX Chain”, SIGMA, 11 (2015), 099, 12 pp.