Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 169, Number 2, Pages 218–228
DOI: https://doi.org/10.4213/tmf6723
(Mi tmf6723)
 

This article is cited in 1 scientific paper (total in 1 paper)

Recursive properties of branching and BGG resolution

V. D. Lyakhovsky, A. A. Nazarov

St. Petersburg State University, St. Petersburg, Russia
Full-text PDF (491 kB) Citations (1)
References:
Abstract: Recurrence relations for branching coefficients are based on a certain decomposition of the singular element. We show that this decomposition can be used to construct parabolic Verma modules and to obtain the generalized Weyl–Verma formulas for characters. We also demonstrate that the branching coefficients determine the generalized Bernstein–Gelfand–Gelfand resolution.
Keywords: Lie algebra representation, branching rule, Bernstein–Gelfand–Gelfand resolution.
Received: 19.11.2011
English version:
Theoretical and Mathematical Physics, 2011, Volume 169, Issue 2, Pages 1551–1560
DOI: https://doi.org/10.1007/s11232-011-0132-9
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. D. Lyakhovsky, A. A. Nazarov, “Recursive properties of branching and BGG resolution”, TMF, 169:2 (2011), 218–228; Theoret. and Math. Phys., 169:2 (2011), 1551–1560
Citation in format AMSBIB
\Bibitem{LyaNaz11}
\by V.~D.~Lyakhovsky, A.~A.~Nazarov
\paper Recursive properties of branching and BGG resolution
\jour TMF
\yr 2011
\vol 169
\issue 2
\pages 218--228
\mathnet{http://mi.mathnet.ru/tmf6723}
\crossref{https://doi.org/10.4213/tmf6723}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3171185}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...169.1551L}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 169
\issue 2
\pages 1551--1560
\crossref{https://doi.org/10.1007/s11232-011-0132-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000297912700004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83055179518}
Linking options:
  • https://www.mathnet.ru/eng/tmf6723
  • https://doi.org/10.4213/tmf6723
  • https://www.mathnet.ru/eng/tmf/v169/i2/p218
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:452
    Full-text PDF :195
    References:67
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024