Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 169, Number 2, Pages 194–203
DOI: https://doi.org/10.4213/tmf6721
(Mi tmf6721)
 

This article is cited in 12 scientific papers (total in 13 papers)

Reflection K-matrices related to Temperley–Lieb R-matrices

J. Avana, P. P. Kulishb, G. Rolleta

a Laboratoire de physique théorique et modélisation (CNRS UMR 8089), Université de Cergy-Pontoise, Cergy-Pontoise, France
b St. Petersburg Department of the Steklov Institute of Mathematics, RAS, St. Petersburg, Russia
References:
Abstract: We construct general solutions of the reflection equation associated with Temperley–Lieb R-matrices. We find their parameterization and obtain the Hamiltonians of the corresponding integrable spin systems.
Keywords: Yang–Baxter equation, R-matrix, reflection equation, open spin chain.
Received: 19.11.2011
English version:
Theoretical and Mathematical Physics, 2011, Volume 169, Issue 2, Pages 1530–1538
DOI: https://doi.org/10.1007/s11232-011-0130-y
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: J. Avan, P. P. Kulish, G. Rollet, “Reflection K-matrices related to Temperley–Lieb R-matrices”, TMF, 169:2 (2011), 194–203; Theoret. and Math. Phys., 169:2 (2011), 1530–1538
Citation in format AMSBIB
\Bibitem{AvaKulRol11}
\by J.~Avan, P.~P.~Kulish, G.~Rollet
\paper Reflection $K$-matrices related to Temperley--Lieb $R$-matrices
\jour TMF
\yr 2011
\vol 169
\issue 2
\pages 194--203
\mathnet{http://mi.mathnet.ru/tmf6721}
\crossref{https://doi.org/10.4213/tmf6721}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...169.1530A}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 169
\issue 2
\pages 1530--1538
\crossref{https://doi.org/10.1007/s11232-011-0130-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000297912700002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83055179542}
Linking options:
  • https://www.mathnet.ru/eng/tmf6721
  • https://doi.org/10.4213/tmf6721
  • https://www.mathnet.ru/eng/tmf/v169/i2/p194
  • This publication is cited in the following 13 articles:
    1. Kun Hao, Olof Salberger, Vladimir Korepin, “Exact solution of the quantum integrable model associated with the Motzkin spin chain”, J. High Energ. Phys., 2023:8 (2023)  crossref
    2. Tong B., Salberger O., Hao K., Korepin V., “Shor-Movassagh Chain Leads to Unusual Integrable Model”, J. Phys. A-Math. Theor., 54:39 (2021), 394002  crossref  mathscinet  isi
    3. Kitanine N. Nepomechie R.I. Reshetikhin N., “Quantum Integrability and Quantum Groups: a Special Issue in Memory of Petr P Kulish”, J. Phys. A-Math. Theor., 51:11 (2018), 110201  crossref  mathscinet  zmath  isi  scopus
    4. Lima-Santos A., “On the Uq[osp(1|2)] Temperley–Lieb Model”, J. Stat. Phys., 165:5 (2016), 953–969  crossref  mathscinet  zmath  isi  elib  scopus
    5. Hutsalyuk A., Liashyk A., Pakuliak S.Z., Ragoucy E., Slavnov N.A., “Scalar products of Bethe vectors in models with gl(2|1) symmetry 1. Super-analog of Reshetikhin formula”, J. Phys. A-Math. Theor., 49:45 (2016), 454005, 1–28  crossref  mathscinet  isi  scopus
    6. Nepomechie R.I., Pimenta R.A., “Algebraic Bethe ansatz for the Temperley–Lieb spin-1 chain”, Nucl. Phys. B, 910 (2016), 885–909  crossref  mathscinet  zmath  isi  elib  scopus
    7. Nepomechie R.I., Pimenta R.A., “Universal Bethe ansatz solution for the Temperley–Lieb spin chain”, Nucl. Phys. B, 910 (2016), 910–928  crossref  mathscinet  zmath  isi  elib  scopus
    8. “Osnovnye nauchnye trudy Petra Petrovicha Kulisha”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 23, Zap. nauchn. sem. POMI, 433, POMI, SPb., 2015, 8–19  mathnet  mathscinet
    9. J. Avan, T. Fonseca, L. Frappat, P. P. Kulish, Э. Ragoucy, G. Rollet, “Temperley–Lieb R-matrices from generalized Hadamard matrices”, Theoret. and Math. Phys., 178:2 (2014), 223–238  mathnet  crossref  crossref  zmath  adsnasa  isi  elib  elib
    10. J. Avan, P. P. Kulish, G. Rollet, “Reflection matrices from Hadamard-type Temperley–Lieb R-matrices”, Theoret. and Math. Phys., 179:1 (2014), 387–394  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. Ribeiro G.A.P., Lima-Santos A., “Bethe Ansatz for the Temperley-Lieb Spin Chain with Integrable Open Boundaries”, J. Stat. Mech.-Theory Exp., 2013, P02035  crossref  mathscinet  isi  elib  scopus
    12. Lima-Santos A., “Temperley-Lieb K-Matrices”, J. Stat. Mech.-Theory Exp., 2013, P10021  crossref  mathscinet  isi  scopus
    13. Jean Avan, Baptiste Billaud, Geneviéve Rollet, “Classification of non-affine non-Hecke dynamical R-matrices”, SIGMA, 8 (2012), 064, 45 pp.  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:528
    Full-text PDF :228
    References:66
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025