Abstract:
We consider the Heisenberg spin-$1/2$$XXZ$ magnet in the case where the anisotropy parameter tends to infinity (the so-called Ising limit). We find the temperature correlation function of a ferromagnetic string above the ground state. Our approach to calculating correlation functions is based on expressing the wave function in the considered limit in terms of Schur symmetric functions. We show that the asymptotic amplitude of the above correlation function at low temperatures is proportional to the squared number of strict plane partitions in a box.
Citation:
N. M. Bogolyubov, K. L. Malyshev, “Ising limit of a Heisenberg $XXZ$ magnet and some temperature correlation functions”, TMF, 169:2 (2011), 179–193; Theoret. and Math. Phys., 169:2 (2011), 1517–1529
\Bibitem{BogMal11}
\by N.~M.~Bogolyubov, K.~L.~Malyshev
\paper Ising limit of a~Heisenberg $XXZ$ magnet and some temperature correlation functions
\jour TMF
\yr 2011
\vol 169
\issue 2
\pages 179--193
\mathnet{http://mi.mathnet.ru/tmf6720}
\crossref{https://doi.org/10.4213/tmf6720}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3171182}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...169.1517B}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 169
\issue 2
\pages 1517--1529
\crossref{https://doi.org/10.1007/s11232-011-0129-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000297912700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83055179539}
Linking options:
https://www.mathnet.ru/eng/tmf6720
https://doi.org/10.4213/tmf6720
https://www.mathnet.ru/eng/tmf/v169/i2/p179
This publication is cited in the following 7 articles:
Lenart Zadnik, Juan P. Garrahan, “Slow heterogeneous relaxation due to constraints in dual XXZ models”, Phys. Rev. B, 108:10 (2023)
Pozsgay B. Gombor T. Hutsalyuk A. Jiang Yu. Pristyak L. Vernier E., “Integrable Spin Chain With Hilbert Space Fragmentation and Solvable Real-Time Dynamics”, Phys. Rev. E, 104:4 (2021), 044106
Lenart Zadnik, Maurizio Fagotti, “The Folded Spin-1/2 XXZ Model: I. Diagonalisation, Jamming, and Ground State Properties”, SciPost Phys. Core, 4:2 (2021)
Saeedian M. Zahabi A., “Exact Solvability and Asymptotic Aspects of Generalized Xx0 Spin Chains”, Physica A, 549 (2020), 124406
N. M. Bogolyubov, K. L. Malyshev, “Integrable models and combinatorics”, Russian Math. Surveys, 70:5 (2015), 789–856
J. Math. Sci. (N. Y.), 216:1 (2016), 8–22
Bogoliubov N.M. Malyshev C., “Correlation Functions of Xxo Heisenberg Chain, Q-Binomial Determinants, and Random Walks”, Nucl. Phys. B, 879 (2014), 268–291