Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 168, Number 1, Pages 35–48
DOI: https://doi.org/10.4213/tmf6662
(Mi tmf6662)
 

This article is cited in 44 scientific papers (total in 44 papers)

Exact solutions of the modified Korteweg–de Vries equation

F. Demontis

Dipartimento Matematica, Università di Cagliari, Cagliari, Italy
References:
Abstract: We use the inverse scattering method to obtain a formula for certain exact solutions of the modified Korteweg–de Vries (mKdV) equation. Using matrix exponentials, we write the kernel of the relevant Marchenko integral equation as $\Omega(x+y;t)=Ce^{-(x+y)A}e^{8A^3 t}B$, where the real matrix triplet $(A,B,C)$ consists of a constant $p{\times}p$ matrix $A$ with eigenvalues having positive real parts, a constant $p\times1$ matrix $B$, and a constant $1\times p$ matrix $C$ for a positive integer $p$. Using separation of variables, we explicitly solve the Marchenko integral equation, yielding exact solutions of the mKdV equation. These solutions are constructed in terms of the unique solution $P$ of the Sylvester equation $AP+PA=BC$ or in terms of the unique solutions $Q$ and $N$ of the Lyapunov equations $A^\dag Q+QA=C^\dag C$ and $AN+NA^\dag=BB^\dag$, where $B^\dag$ denotes the conjugate transposed matrix. We consider two interesting examples.
Keywords: inverse scattering method, Lyapunov equation, explicit solution of the modified Korteweg–de Vries equation.
English version:
Theoretical and Mathematical Physics, 2011, Volume 168, Issue 1, Pages 886–897
DOI: https://doi.org/10.1007/s11232-011-0072-4
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: F. Demontis, “Exact solutions of the modified Korteweg–de Vries equation”, TMF, 168:1 (2011), 35–48; Theoret. and Math. Phys., 168:1 (2011), 886–897
Citation in format AMSBIB
\Bibitem{Dem11}
\by F.~Demontis
\paper Exact solutions of the~modified Korteweg--de Vries equation
\jour TMF
\yr 2011
\vol 168
\issue 1
\pages 35--48
\mathnet{http://mi.mathnet.ru/tmf6662}
\crossref{https://doi.org/10.4213/tmf6662}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3166269}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...168..886D}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 168
\issue 1
\pages 886--897
\crossref{https://doi.org/10.1007/s11232-011-0072-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000293631800004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79961146896}
Linking options:
  • https://www.mathnet.ru/eng/tmf6662
  • https://doi.org/10.4213/tmf6662
  • https://www.mathnet.ru/eng/tmf/v168/i1/p35
  • This publication is cited in the following 44 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:1464
    Full-text PDF :519
    References:100
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024