Abstract:
We develop a group theory approach for constructing solutions of integrable hierarchies corresponding to the deformation of a collection of commuting directions inside the Lie algebra of upper-triangular $\mathbb Z{\times}\mathbb Z$ matrices. Depending on the choice of the set of commuting directions, the homogeneous space from which these solutions are constructed is the relative frame bundle of an infinite-dimensional flag variety or the infinite-dimensional flag variety itself. We give the evolution equations for the perturbations of the basic directions in the Lax form, and they reduce to a tower of differential and difference equations for the coefficients of these perturbed matrices. The Lax equations follow from the linearization of the hierarchy and require introducing a proper analogue of the Baker–Akhiezer function.
Citation:
G. F. Helminck, A. G. Helminck, A. V. Opimakh, “The relative frame bundle of an infinite-dimensional flag variety and solutions of integrable hierarchies”, TMF, 165:3 (2010), 440–471; Theoret. and Math. Phys., 165:3 (2010), 1610–1636
\Bibitem{HelHelOpi10}
\by G.~F.~Helminck, A.~G.~Helminck, A.~V.~Opimakh
\paper The~relative frame bundle of an~infinite-dimensional flag variety and solutions of integrable hierarchies
\jour TMF
\yr 2010
\vol 165
\issue 3
\pages 440--471
\mathnet{http://mi.mathnet.ru/tmf6587}
\crossref{https://doi.org/10.4213/tmf6587}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 165
\issue 3
\pages 1610--1636
\crossref{https://doi.org/10.1007/s11232-010-0133-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288427000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79151472227}
Linking options:
https://www.mathnet.ru/eng/tmf6587
https://doi.org/10.4213/tmf6587
https://www.mathnet.ru/eng/tmf/v165/i3/p440
This publication is cited in the following 3 articles:
Helminck G.F. Helminck A.G., “Infinite Dimensional Symmetric Spaces and Lax Equations Compatible With the Infinite Toda Chain”, J. Geom. Phys., 85 (2014), 60–74
Helminck G.F., Opimakh A.V., “The zero curvature form of integrable hierarchies in the $\mathbb Z\times\mathbb Z$-matrices”, Algebr. Colloq., 19:2 (2012), 237–262
Helminck G.F., Helminck A.G., Opimakh A.V., “Equivalent forms of multi component Toda hierarchies”, J. Geom. Phys., 61:4 (2011), 847–873