Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2010, Volume 165, Number 3, Pages 440–471
DOI: https://doi.org/10.4213/tmf6587
(Mi tmf6587)
 

This article is cited in 3 scientific papers (total in 3 papers)

The relative frame bundle of an infinite-dimensional flag variety and solutions of integrable hierarchies

G. F. Helmincka, A. G. Helminckb, A. V. Opimakhc

a Korteweg–de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, The Netherlands
b North Carolina State University, Raleigh, USA
c Orenburg State Pedagogical University, Orenburg, Russia
Full-text PDF (537 kB) Citations (3)
References:
Abstract: We develop a group theory approach for constructing solutions of integrable hierarchies corresponding to the deformation of a collection of commuting directions inside the Lie algebra of upper-triangular $\mathbb Z{\times}\mathbb Z$ matrices. Depending on the choice of the set of commuting directions, the homogeneous space from which these solutions are constructed is the relative frame bundle of an infinite-dimensional flag variety or the infinite-dimensional flag variety itself. We give the evolution equations for the perturbations of the basic directions in the Lax form, and they reduce to a tower of differential and difference equations for the coefficients of these perturbed matrices. The Lax equations follow from the linearization of the hierarchy and require introducing a proper analogue of the Baker–Akhiezer function.
Keywords: upper-triangular $\mathbb Z{\times}\mathbb Z$ matrices, Lax equations, zero curvature form.
English version:
Theoretical and Mathematical Physics, 2010, Volume 165, Issue 3, Pages 1610–1636
DOI: https://doi.org/10.1007/s11232-010-0133-0
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. F. Helminck, A. G. Helminck, A. V. Opimakh, “The relative frame bundle of an infinite-dimensional flag variety and solutions of integrable hierarchies”, TMF, 165:3 (2010), 440–471; Theoret. and Math. Phys., 165:3 (2010), 1610–1636
Citation in format AMSBIB
\Bibitem{HelHelOpi10}
\by G.~F.~Helminck, A.~G.~Helminck, A.~V.~Opimakh
\paper The~relative frame bundle of an~infinite-dimensional flag variety and solutions of integrable hierarchies
\jour TMF
\yr 2010
\vol 165
\issue 3
\pages 440--471
\mathnet{http://mi.mathnet.ru/tmf6587}
\crossref{https://doi.org/10.4213/tmf6587}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 165
\issue 3
\pages 1610--1636
\crossref{https://doi.org/10.1007/s11232-010-0133-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288427000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79151472227}
Linking options:
  • https://www.mathnet.ru/eng/tmf6587
  • https://doi.org/10.4213/tmf6587
  • https://www.mathnet.ru/eng/tmf/v165/i3/p440
  • This publication is cited in the following 3 articles:
    1. Helminck G.F. Helminck A.G., “Infinite Dimensional Symmetric Spaces and Lax Equations Compatible With the Infinite Toda Chain”, J. Geom. Phys., 85 (2014), 60–74  crossref  mathscinet  zmath  adsnasa  isi  scopus
    2. Helminck G.F., Opimakh A.V., “The zero curvature form of integrable hierarchies in the $\mathbb Z\times\mathbb Z$-matrices”, Algebr. Colloq., 19:2 (2012), 237–262  crossref  mathscinet  zmath  isi  elib
    3. Helminck G.F., Helminck A.G., Opimakh A.V., “Equivalent forms of multi component Toda hierarchies”, J. Geom. Phys., 61:4 (2011), 847–873  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:557
    Full-text PDF :225
    References:50
    First page:19
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025