Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2010, Volume 165, Number 3, Pages 472–487
DOI: https://doi.org/10.4213/tmf6588
(Mi tmf6588)
 

This article is cited in 1 scientific paper (total in 1 paper)

Moving poles of meromorphic linear systems on P1(C) in the complex plane

G. F. Helmincka, V. A. Poberezhnyib

a Korteweg–de Vries Institute of Mathematics, University of Amsterdam, Amsterdam, The~Netherlands
b Institute for Theoretical and Experimental Physics, Moscow, Russia
Full-text PDF (473 kB) Citations (1)
References:
Abstract: Let E0 be a holomorphic vector bundle over P1(C) and 0 be a meromorphic connection of E0. We introduce the notion of an integrable connection that describes the movement of the poles of 0 in the complex plane with integrability preserved. We show the that such a deformation exists under sufficiently weak conditions on the deformation space. We also show that if the vector bundle E0 is trivial, then the solutions of the corresponding nonlinear equations extend meromorphically to the deformation space.
Keywords: integrable connection, deformation space, integrable deformation, logarithmic pole.
English version:
Theoretical and Mathematical Physics, 2010, Volume 165, Issue 3, Pages 1637–1649
DOI: https://doi.org/10.1007/s11232-010-0134-z
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. F. Helminck, V. A. Poberezhnyi, “Moving poles of meromorphic linear systems on P1(C) in the complex plane”, TMF, 165:3 (2010), 472–487; Theoret. and Math. Phys., 165:3 (2010), 1637–1649
Citation in format AMSBIB
\Bibitem{HelPob10}
\by G.~F.~Helminck, V.~A.~Poberezhnyi
\paper Moving poles of meromorphic linear systems on $\mathbb P^1(\mathbb C)$ in the~complex plane
\jour TMF
\yr 2010
\vol 165
\issue 3
\pages 472--487
\mathnet{http://mi.mathnet.ru/tmf6588}
\crossref{https://doi.org/10.4213/tmf6588}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 165
\issue 3
\pages 1637--1649
\crossref{https://doi.org/10.1007/s11232-010-0134-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288427000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79951693207}
Linking options:
  • https://www.mathnet.ru/eng/tmf6588
  • https://doi.org/10.4213/tmf6588
  • https://www.mathnet.ru/eng/tmf/v165/i3/p472
  • This publication is cited in the following 1 articles:
    1. V. A. Poberezhny, “On deformations of linear systems of differential equations and the Painlevé property”, Journal of Mathematical Sciences, 195:4 (2012), 433–533  mathnet  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:497
    Full-text PDF :224
    References:60
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025