Abstract:
Let E0 be a holomorphic vector bundle over P1(C) and ∇0 be a meromorphic connection of E0. We introduce the notion of an integrable connection that describes the movement of the poles of ∇0 in the complex plane with integrability preserved. We show the that such a deformation exists under sufficiently weak conditions on the deformation space. We also show that if the vector bundle E0 is trivial, then the solutions of the corresponding nonlinear equations extend meromorphically to the deformation space.
Keywords:
integrable connection, deformation space, integrable deformation, logarithmic pole.
Citation:
G. F. Helminck, V. A. Poberezhnyi, “Moving poles of meromorphic linear systems on P1(C) in the complex plane”, TMF, 165:3 (2010), 472–487; Theoret. and Math. Phys., 165:3 (2010), 1637–1649
\Bibitem{HelPob10}
\by G.~F.~Helminck, V.~A.~Poberezhnyi
\paper Moving poles of meromorphic linear systems on $\mathbb P^1(\mathbb C)$ in the~complex plane
\jour TMF
\yr 2010
\vol 165
\issue 3
\pages 472--487
\mathnet{http://mi.mathnet.ru/tmf6588}
\crossref{https://doi.org/10.4213/tmf6588}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 165
\issue 3
\pages 1637--1649
\crossref{https://doi.org/10.1007/s11232-010-0134-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288427000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79951693207}
Linking options:
https://www.mathnet.ru/eng/tmf6588
https://doi.org/10.4213/tmf6588
https://www.mathnet.ru/eng/tmf/v165/i3/p472
This publication is cited in the following 1 articles:
V. A. Poberezhny, “On deformations of linear systems of differential equations and the Painlevé property”, Journal of Mathematical Sciences, 195:4 (2012), 433–533