Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2010, Volume 165, Number 3, Pages 426–439
DOI: https://doi.org/10.4213/tmf6586
(Mi tmf6586)
 

This article is cited in 14 scientific papers (total in 14 papers)

Cohomology of skew-holomorphic Lie algebroids

U. Bruzzoab, V. N. Rubtsovcd

a International School for Advanced Studies, Trieste, Italy
b National Institute of Nuclear Physics, Sezione di Trieste, Italy
c Institute for Theoretical and Experimental Physics, Moscow, Russia
d Université d'Angers, Département de Mathématiques LAREMA, VFR Sciences, Angers, France
References:
Abstract: We introduce the notion of a skew-holomorphic Lie algebroid on a complex manifold and explore some cohomology theories that can be associated with it. We present examples and applications of this notion in terms of different types of holomorphic Poisson structures.
Keywords: holomorphic Lie algebroid, matching pair of Lie algebroids, Lie algebroid cohomology, holomorphic Poisson cohomology.
English version:
Theoretical and Mathematical Physics, 2010, Volume 165, Issue 3, Pages 1598–1609
DOI: https://doi.org/10.1007/s11232-010-0132-1
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: U. Bruzzo, V. N. Rubtsov, “Cohomology of skew-holomorphic Lie algebroids”, TMF, 165:3 (2010), 426–439; Theoret. and Math. Phys., 165:3 (2010), 1598–1609
Citation in format AMSBIB
\Bibitem{BruRub10}
\by U.~Bruzzo, V.~N.~Rubtsov
\paper Cohomology of skew-holomorphic Lie algebroids
\jour TMF
\yr 2010
\vol 165
\issue 3
\pages 426--439
\mathnet{http://mi.mathnet.ru/tmf6586}
\crossref{https://doi.org/10.4213/tmf6586}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 165
\issue 3
\pages 1598--1609
\crossref{https://doi.org/10.1007/s11232-010-0132-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288427000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79951689819}
Linking options:
  • https://www.mathnet.ru/eng/tmf6586
  • https://doi.org/10.4213/tmf6586
  • https://www.mathnet.ru/eng/tmf/v165/i3/p426
  • This publication is cited in the following 14 articles:
    1. Pirbodaghi Z., Rezaii M.M., “Forms and Chern Classes on Hermitian Lie Algebroids”, Bull. Iran Math. Soc., 46:1 (2020), 19–36  crossref  mathscinet  isi
    2. Pirbodaghi Z., Rezaii M.M., “Vanishing Theorems on Kahler Lie Algebroids”, Int. J. Geom. Methods Mod. Phys., 17:4 (2020), 2050059  crossref  mathscinet  isi
    3. Salnikov V., “Supersymmetrization: Aksz and Beyond?”, Russ. J. Math. Phys., 27:4 (2020), 517–534  crossref  mathscinet  isi
    4. Ida C., Popescu P., J. Geom. Phys., 112 (2017), 210–223  crossref  mathscinet  zmath  isi  scopus
    5. Ida C., Popescu P., “Contact Structures on Lie Algebroids”, Publ. Math.-Debr., 91:1-2 (2017), 1–31  crossref  mathscinet  zmath  isi  scopus
    6. Bruzzo U., “Lie Algebroid Cohomology as a Derived Functor”, J. Algebra, 483 (2017), 245–261  crossref  mathscinet  zmath  isi  scopus
    7. Ida C., Popescu P., “On Almost Complex Lie Algebroids”, Mediterr. J. Math., 13:2 (2016), 803–824  crossref  mathscinet  zmath  isi  elib  scopus
    8. Vitagliano L., Wade A., “Generalized contact bundles”, C. R. Math., 354:3, 2016 (2016), 313–317  crossref  mathscinet  zmath  isi  elib  scopus
    9. Salnikov V., “Graded Geometry in Gauge Theories and Beyond”, J. Geom. Phys., 87 (2015), 422–431  crossref  mathscinet  zmath  adsnasa  isi  scopus
    10. Mircea Crasmareanu, Cristian Ida, “Almost Analyticity on Almost (Para) Complex Lie Algebroids”, Results. Math., 67:3-4 (2015), 495  crossref
    11. Ugo Bruzzo, Igor Mencattini, Vladimir N. Rubtsov, Pietro Tortella, “Nonabelian holomorphic Lie algebroid extensions”, Int. J. Math., 26:05 (2015), 1550040  crossref
    12. Popescu P., “Poisson Structures on Almost Complex Lie Algebroids”, Int. J. Geom. Methods Mod. Phys., 11:8 (2014), 1450069  crossref  mathscinet  zmath  isi  scopus
    13. Salnikov V., Strobl T., “Dirac SIGMA Models From Gauging”, J. High Energy Phys., 2013, no. 11, 110  crossref  isi  scopus
    14. Tortella P., “Λ-modules and holomorphic Lie algebroid connections”, Cent. Eur. J. Math., 10:4 (2012), 1422–1441  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:437
    Full-text PDF :201
    References:57
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025