Abstract:
We consider the Cauchy problem for the Navier–Stokes system of equations in a three-dimensional space rotating uniformly about the vertical axis with the periodicity condition with respect to the spatial variables. Studying this problem is based on expanding given and sought vector functions in Fourier series in terms of
the eigenfunctions of the curl and Stokes operators. Using the Galerkin method, we reduce the problem to the Cauchy problem for the system of ordinary differential equations, which has a simple explicit form in the basis under consideration. Its linear part is diagonal, which allows writing explicit solutions of the linear Stokes–Sobolev system, to which fluid flows with a nonzero vorticity correspond. Based on the study of the nonlinear interaction of vortical flows, we find an approach that we can use to obtain families of explicit global solutions of the nonlinear problem.
Keywords:
eigenfunction, eigenvalue, curl operator, Stokes operator, Navier–Stokes system of equations, Fourier method, Galerkin method.
Citation:
R. S. Saks, “Global solutions of the Navier–Stokes equations in a uniformly rotating space”, TMF, 162:2 (2010), 196–215; Theoret. and Math. Phys., 162:2 (2010), 163–178
\Bibitem{Sak10}
\by R.~S.~Saks
\paper Global solutions of the~Navier--Stokes equations in a~uniformly rotating space
\jour TMF
\yr 2010
\vol 162
\issue 2
\pages 196--215
\mathnet{http://mi.mathnet.ru/tmf6464}
\crossref{https://doi.org/10.4213/tmf6464}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2681965}
\zmath{https://zbmath.org/?q=an:1195.76155}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...162..163S}
\elib{https://elibrary.ru/item.asp?id=15328335}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 162
\issue 2
\pages 163--178
\crossref{https://doi.org/10.1007/s11232-010-0012-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000275463100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952037304}
Linking options:
https://www.mathnet.ru/eng/tmf6464
https://doi.org/10.4213/tmf6464
https://www.mathnet.ru/eng/tmf/v162/i2/p196
This publication is cited in the following 7 articles:
K. Yu. Malyshev, E. A. Mikhaylov, I. O. Teplyakov, “Rapidly convergent series for solving the electrovortex flow problem in a hemispherical vessel”, Comput. Math. Math. Phys., 62:7 (2022), 1158–1170
R. S. Saks, “Prostranstva Soboleva i kraevye zadachi dlya operatorov rotor i gradient divergentsii”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 24:2 (2020), 249–274
R. S. Saks, “The gradient-of-divergence operator in L2(G)”, Dokl. Math., 91:3 (2015), 359
R. S. Saks, “Orthogonal subspaces of the space L2(G) and self-adjoint extensions of the curl and gradient-of-divergence operators”, Dokl. Math., 91:3 (2015), 313
R. S. Saks, “Sobstvennye funktsii operatorov rotora, gradienta divergentsii i Stoksa. Prilozheniya”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2(31) (2013), 131–146
R. S. Saks, “Solving of spectral problems for curl and Stokes operators”, Ufa Math. J., 5:2 (2013), 63–81
R. S. Saks, “Cauchy problem for the Navier–Stokes equations, Fourier method”, Ufa Math. J., 3:1 (2011), 51–77