Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2010, Volume 162, Number 2, Pages 196–215
DOI: https://doi.org/10.4213/tmf6464
(Mi tmf6464)
 

This article is cited in 7 scientific papers (total in 7 papers)

Global solutions of the Navier–Stokes equations in a uniformly rotating space

R. S. Saks

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
Full-text PDF (529 kB) Citations (7)
References:
Abstract: We consider the Cauchy problem for the Navier–Stokes system of equations in a three-dimensional space rotating uniformly about the vertical axis with the periodicity condition with respect to the spatial variables. Studying this problem is based on expanding given and sought vector functions in Fourier series in terms of the eigenfunctions of the curl and Stokes operators. Using the Galerkin method, we reduce the problem to the Cauchy problem for the system of ordinary differential equations, which has a simple explicit form in the basis under consideration. Its linear part is diagonal, which allows writing explicit solutions of the linear Stokes–Sobolev system, to which fluid flows with a nonzero vorticity correspond. Based on the study of the nonlinear interaction of vortical flows, we find an approach that we can use to obtain families of explicit global solutions of the nonlinear problem.
Keywords: eigenfunction, eigenvalue, curl operator, Stokes operator, Navier–Stokes system of equations, Fourier method, Galerkin method.
Received: 01.10.2008
Revised: 26.06.2009
English version:
Theoretical and Mathematical Physics, 2010, Volume 162, Issue 2, Pages 163–178
DOI: https://doi.org/10.1007/s11232-010-0012-8
Bibliographic databases:
Language: Russian
Citation: R. S. Saks, “Global solutions of the Navier–Stokes equations in a uniformly rotating space”, TMF, 162:2 (2010), 196–215; Theoret. and Math. Phys., 162:2 (2010), 163–178
Citation in format AMSBIB
\Bibitem{Sak10}
\by R.~S.~Saks
\paper Global solutions of the~Navier--Stokes equations in a~uniformly rotating space
\jour TMF
\yr 2010
\vol 162
\issue 2
\pages 196--215
\mathnet{http://mi.mathnet.ru/tmf6464}
\crossref{https://doi.org/10.4213/tmf6464}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2681965}
\zmath{https://zbmath.org/?q=an:1195.76155}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...162..163S}
\elib{https://elibrary.ru/item.asp?id=15328335}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 162
\issue 2
\pages 163--178
\crossref{https://doi.org/10.1007/s11232-010-0012-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000275463100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952037304}
Linking options:
  • https://www.mathnet.ru/eng/tmf6464
  • https://doi.org/10.4213/tmf6464
  • https://www.mathnet.ru/eng/tmf/v162/i2/p196
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:986
    Full-text PDF :248
    References:84
    First page:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024