Abstract:
We extend cluster perturbation theory to quantum spin systems. As an application, we calculate the spectral function and the density of states of one-particle excitations of a chain of spin 1/2 particles with alternating exchange interaction.
Keywords:
cluster perturbation theory, singlet magnetics, spin chain.
Citation:
A. S. Ovchinnikov, I. G. Bostrem, Vl. E. Sinitsyn, “Cluster perturbation theory for spin Hamiltonians”, TMF, 162:2 (2010), 216–226; Theoret. and Math. Phys., 162:2 (2010), 179–187
Fumagalli R., Heverhagen J., Betto D., Arpaia R., Rossi M., Di Castro D., Brookes N.B., Sala M.M., Daghofer M., Braicovich L., Wohlfeld K., Ghiringhelli G., “Mobile Orbitons in Ca2Cuo3: Crucial Role of Hund'S Exchange”, Phys. Rev. B, 101:20 (2020), 205117
Heverhagen J., Daghofer M., “Spinon-Orbiton Repulsion and Attraction Mediated By Hund'S Rule”, Phys. Rev. B, 98:8 (2018), 085120
Them K., Vedmedenko E.Y., Fredenhagen K., Wiesendanger R., “Bounds on Expectation Values of Quantum Subsystems and Perturbation Theory”, J. Phys. A-Math. Theor., 48:7 (2015), 075301
Cheng-Chien Chen, Michel van Veenendaal, Thomas P. Devereaux, Krzysztof Wohlfeld, “Fractionalization, entanglement, and separation: Understanding the collective excitations in a spin-orbital chain”, Phys. Rev. B, 91:16 (2015)
David Sénéchal, Springer Series in Solid-State Sciences, 171, Strongly Correlated Systems, 2012, 237
Irene G. Bostrem, Alexander S. Ovchinnikov, Valentine E. Sinitsyn, “Application of Symmetry Methods to Low-Dimensional Heisenberg Magnets”, Symmetry, 2:2 (2010), 722