Abstract:
We calculate the generators and commutation relations explicitly for higher symmetry algebras of a class of hyperbolic Lagrangian systems of Liouville type, in particular, for two-dimensional Toda chains associated with semisimple complex Lie algebras.
Keywords:
symmetry, two-dimensional Toda chain, Liouville-type system, Hamiltonian hierarchy, bracket.
Citation:
A. V. Kiselev, J. W. van de Leur, “Symmetry algebras of Lagrangian Liouville-type systems”, TMF, 162:2 (2010), 179–195; Theoret. and Math. Phys., 162:2 (2010), 149–162
\Bibitem{KisVan10}
\by A.~V.~Kiselev, J.~W.~van de Leur
\paper Symmetry algebras of Lagrangian Liouville-type systems
\jour TMF
\yr 2010
\vol 162
\issue 2
\pages 179--195
\mathnet{http://mi.mathnet.ru/tmf6463}
\crossref{https://doi.org/10.4213/tmf6463}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2681964}
\zmath{https://zbmath.org/?q=an:05790845}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...162..149K}
\elib{https://elibrary.ru/item.asp?id=15366884}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 162
\issue 2
\pages 149--162
\crossref{https://doi.org/10.1007/s11232-010-0011-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000275463100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952033838}
Linking options:
https://www.mathnet.ru/eng/tmf6463
https://doi.org/10.4213/tmf6463
https://www.mathnet.ru/eng/tmf/v162/i2/p179
This publication is cited in the following 9 articles:
Arzu Akbulut, Melike Kaplan, Mohammed K.A. Kaabar, “New conservation laws and exact solutions of the special case of the fifth-order KdV equation”, Journal of Ocean Engineering and Science, 7:4 (2022), 377
Maria N. Kuznetsova, “Lax Pair for a Novel Two-Dimensional Lattice”, SIGMA, 17 (2021), 088, 13 pp.
Carpentier S. Mikhailov A.V. Wang J.P., “Rational Recursion Operators For Integrable Differential-Difference Equations”, Commun. Math. Phys., 370:3 (2019), 807–851
Sergey Ya. Startsev, “Formal Integrals and Noether Operators of Nonlinear Hyperbolic Partial Differential Systems Admitting a Rich Set of Symmetries”, SIGMA, 13 (2017), 034, 20 pp.
Kiselev A.V. Krutov A.O., “Non-Abelian Lie Algebroids Over Jet Spaces”, J. Nonlinear Math. Phys., 21:2 (2014), 188–213
Kiselev A.V., “Homological evolutionary vector fields in Korteweg–de Vries, Liouville, Maxwell, and several other models”, 7th International Conference on Quantum Theory and Symmetries (QTS7), J. Phys.: Conf. Ser., 343, 2012, 012058
A. V. Kiselev, J. W. van de Leur, “Variational Lie algebroids and homological evolutionary vector
fields”, Theoret. and Math. Phys., 167:3 (2011), 772–784
Hussin V., Kiselev A.V., “A convenient criterion under which Z2-graded operators are Hamiltonian”, Physical and Mathematical Aspects of Symmetry: Proceedings of the 28th International Colloquium on Group-Theoretical Methods in Physics, J. Phys.: Conf. Ser., 284, 2011, 012035
Kiselev A.V., van de Leur J.W., “A family of second Lie algebra structures for symmetries of a dispersionless Boussinesq system”, Journal of Physics A-Mathematical and Theoretical, 42:40 (2009), 404011