Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2010, Volume 162, Number 2, Pages 179–195
DOI: https://doi.org/10.4213/tmf6463
(Mi tmf6463)
 

This article is cited in 9 scientific papers (total in 9 papers)

Symmetry algebras of Lagrangian Liouville-type systems

A. V. Kiselev, J. W. van de Leur

Mathematical Institute, University of Utrecht, Utrecht, The Netherlands
Full-text PDF (647 kB) Citations (9)
References:
Abstract: We calculate the generators and commutation relations explicitly for higher symmetry algebras of a class of hyperbolic Lagrangian systems of Liouville type, in particular, for two-dimensional Toda chains associated with semisimple complex Lie algebras.
Keywords: symmetry, two-dimensional Toda chain, Liouville-type system, Hamiltonian hierarchy, bracket.
Received: 26.02.2009
Revised: 18.05.2009
English version:
Theoretical and Mathematical Physics, 2010, Volume 162, Issue 2, Pages 149–162
DOI: https://doi.org/10.1007/s11232-010-0011-9
Bibliographic databases:
Language: Russian
Citation: A. V. Kiselev, J. W. van de Leur, “Symmetry algebras of Lagrangian Liouville-type systems”, TMF, 162:2 (2010), 179–195; Theoret. and Math. Phys., 162:2 (2010), 149–162
Citation in format AMSBIB
\Bibitem{KisVan10}
\by A.~V.~Kiselev, J.~W.~van de Leur
\paper Symmetry algebras of Lagrangian Liouville-type systems
\jour TMF
\yr 2010
\vol 162
\issue 2
\pages 179--195
\mathnet{http://mi.mathnet.ru/tmf6463}
\crossref{https://doi.org/10.4213/tmf6463}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2681964}
\zmath{https://zbmath.org/?q=an:05790845}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...162..149K}
\elib{https://elibrary.ru/item.asp?id=15366884}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 162
\issue 2
\pages 149--162
\crossref{https://doi.org/10.1007/s11232-010-0011-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000275463100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952033838}
Linking options:
  • https://www.mathnet.ru/eng/tmf6463
  • https://doi.org/10.4213/tmf6463
  • https://www.mathnet.ru/eng/tmf/v162/i2/p179
  • This publication is cited in the following 9 articles:
    1. Arzu Akbulut, Melike Kaplan, Mohammed K.A. Kaabar, “New conservation laws and exact solutions of the special case of the fifth-order KdV equation”, Journal of Ocean Engineering and Science, 7:4 (2022), 377  crossref
    2. Maria N. Kuznetsova, “Lax Pair for a Novel Two-Dimensional Lattice”, SIGMA, 17 (2021), 088, 13 pp.  mathnet  crossref
    3. Carpentier S. Mikhailov A.V. Wang J.P., “Rational Recursion Operators For Integrable Differential-Difference Equations”, Commun. Math. Phys., 370:3 (2019), 807–851  crossref  mathscinet  isi
    4. Sergey Ya. Startsev, “Formal Integrals and Noether Operators of Nonlinear Hyperbolic Partial Differential Systems Admitting a Rich Set of Symmetries”, SIGMA, 13 (2017), 034, 20 pp.  mathnet  crossref
    5. Kiselev A.V. Krutov A.O., “Non-Abelian Lie Algebroids Over Jet Spaces”, J. Nonlinear Math. Phys., 21:2 (2014), 188–213  crossref  mathscinet  isi  scopus
    6. Kiselev A.V., “Homological evolutionary vector fields in Korteweg–de Vries, Liouville, Maxwell, and several other models”, 7th International Conference on Quantum Theory and Symmetries (QTS7), J. Phys.: Conf. Ser., 343, 2012, 012058  crossref  adsnasa  isi  scopus
    7. A. V. Kiselev, J. W. van de Leur, “Variational Lie algebroids and homological evolutionary vector fields”, Theoret. and Math. Phys., 167:3 (2011), 772–784  mathnet  crossref  crossref  adsnasa  isi
    8. Hussin V., Kiselev A.V., “A convenient criterion under which Z2-graded operators are Hamiltonian”, Physical and Mathematical Aspects of Symmetry: Proceedings of the 28th International Colloquium on Group-Theoretical Methods in Physics, J. Phys.: Conf. Ser., 284, 2011, 012035  crossref  adsnasa  isi  scopus
    9. Kiselev A.V., van de Leur J.W., “A family of second Lie algebra structures for symmetries of a dispersionless Boussinesq system”, Journal of Physics A-Mathematical and Theoretical, 42:40 (2009), 404011  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:586
    Full-text PDF :223
    References:89
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025