Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2008, Volume 157, Number 2, Pages 188–207
DOI: https://doi.org/10.4213/tmf6274
(Mi tmf6274)
 

This article is cited in 30 scientific papers (total in 31 papers)

Two-dimensional rational solitons and their blowup via the Moutard transformation

I. A. Taimanova, S. P. Tsarevb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Krasnoyarsk State Pedagogical University named after V. P. Astaf'ev
References:
Abstract: We construct a family of two-dimensional stationary Schrödinger operators with rapidly decaying smooth rational potentials and nontrivial L2 kernels. We show that some of the constructed potentials generate solutions of the Veselov–Novikov equation that decay rapidly at infinity, are nonsingular at t=0, and have singularities at finite times tt0>0.
Keywords: two-dimensional Schrödinger operator, Moutard transformation, Veselov–Novikov equation, solution blowup.
Received: 21.01.2008
English version:
Theoretical and Mathematical Physics, 2008, Volume 157, Issue 2, Pages 1525–1541
DOI: https://doi.org/10.1007/s11232-008-0127-3
Bibliographic databases:
Language: Russian
Citation: I. A. Taimanov, S. P. Tsarev, “Two-dimensional rational solitons and their blowup via the Moutard transformation”, TMF, 157:2 (2008), 188–207; Theoret. and Math. Phys., 157:2 (2008), 1525–1541
Citation in format AMSBIB
\Bibitem{TaiTsa08}
\by I.~A.~Taimanov, S.~P.~Tsarev
\paper Two-dimensional rational solitons and their blowup via the~Moutard
transformation
\jour TMF
\yr 2008
\vol 157
\issue 2
\pages 188--207
\mathnet{http://mi.mathnet.ru/tmf6274}
\crossref{https://doi.org/10.4213/tmf6274}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2493777}
\zmath{https://zbmath.org/?q=an:1156.81388}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...157.1525T}
\elib{https://elibrary.ru/item.asp?id=11764454}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 157
\issue 2
\pages 1525--1541
\crossref{https://doi.org/10.1007/s11232-008-0127-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000261657100003}
\elib{https://elibrary.ru/item.asp?id=13593819}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-58149268988}
Linking options:
  • https://www.mathnet.ru/eng/tmf6274
  • https://doi.org/10.4213/tmf6274
  • https://www.mathnet.ru/eng/tmf/v157/i2/p188
  • This publication is cited in the following 31 articles:
    1. Allal Ghanmi, Khalil Lamsaf, “Two-dimensional (p,q)-heat polynomials of Gould–Hopper type”, Journal of Mathematical Analysis and Applications, 530:1 (2024), 127682  crossref
    2. Iskander A. Taimanov, “On a Formation of Singularities of Solutions to Soliton Equations Represented by L, A, B-triples”, Acta. Math. Sin.-English Ser., 40:1 (2024), 406  crossref
    3. A. G. Kudryavtsev, “On the twofold Moutard transformation of the stationary Schrгöinger equation with axial symmetry”, JETP Letters, 119:7 (2024), 534–537  mathnet  crossref  crossref
    4. M. M. Malamud, V. V. Marchenko, “On Kernels of Invariant Schrödinger Operators with Point Interactions. Grinevich–Novikov Conjecture”, Dokl. Math., 109:2 (2024), 125  crossref
    5. M. M. Malamud, V. V. Marchenko, “On kernels of invariant Schrödinger operators with point interactions. Grinevich–Novikov problem”, Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, 516 (2024), 31  crossref
    6. P. G. Grinevich, “Riemann Surfaces Close to Degenerate Ones in the Theory of Rogue Waves”, Proc. Steklov Inst. Math., 325 (2024), 86–110  mathnet  crossref  crossref  zmath  isi
    7. Joseph Adams, Axel Grünrock, “Low Regularity Local Well-Posedness for the Zero Energy Novikov–Veselov Equation”, SIAM J. Math. Anal., 55:1 (2023), 19  crossref
    8. A. V. Bolsinov, V. M. Buchstaber, A. P. Veselov, P. G. Grinevich, I. A. Dynnikov, V. V. Kozlov, Yu. A. Kordyukov, D. V. Millionshchikov, A. E. Mironov, R. G. Novikov, S. P. Novikov, A. A. Yakovlev, “Iskander Asanovich Taimanov (on his 60th birthday)”, Russian Math. Surveys, 77:6 (2022), 1159–1168  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    9. A. G. Kudryavtsev, “On the nonlocal darboux transformation for time-independent axially symmetric Schrödinger and Helmholtz equations”, JETP Letters, 113:6 (2021), 409–412  mathnet  crossref  crossref  isi  elib
    10. A. G. Kudryavtsev, “Exact solutions of the time-independent axially symmetric Schrödinger equation”, JETP Letters, 111:2 (2020), 126–128  mathnet  crossref  crossref  isi  elib
    11. R. G. Novikov, I. A. Taimanov, “Darboux–Moutard transformations and Poincaré–Steklov operators”, Proc. Steklov Inst. Math., 302 (2018), 315–324  mathnet  crossref  crossref  mathscinet  isi  elib
    12. Adilkhanov A.N. Taimanov I.A., “On numerical study of the discrete spectrum of a two-dimensional Schrödinger operator with soliton potential”, Commun. Nonlinear Sci. Numer. Simul., 42 (2017), 83–92  crossref  mathscinet  isi  elib  scopus
    13. A. G. Kudryavtsev, “Nonlocal Darboux transformation of the two-dimensional stationary Schrödinger equation and its relation to the Moutard transformation”, Theoret. and Math. Phys., 187:1 (2016), 455–462  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    14. R. G. Novikov, I. A. Taimanov, “Moutard type transformation for matrix generalized analytic functions and gauge transformations”, Russian Math. Surveys, 71:5 (2016), 970–972  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    15. I. A. Taimanov, “The Moutard Transformation of Two-Dimensional Dirac Operators and Möbius Geometry”, Math. Notes, 97:1 (2015), 124–135  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    16. I. A. Taimanov, “Blowing up solutions of the modified Novikov–Veselov equation and minimal surfaces”, Theoret. and Math. Phys., 182:2 (2015), 173–181  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    17. I. A. Taimanov, “A fast decaying solution to the modified Novikov-Veselov equation with a one-point singularity”, Dokl. Math., 91:1 (2015), 35  crossref
    18. R. G. Novikov, I. A. Taimanov, S. P. Tsarev, “Two-Dimensional von Neumann–Wigner Potentials with a Multiple Positive Eigenvalue”, Funct. Anal. Appl., 48:4 (2014), 295–297  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    19. Perry P.A., “Miura Maps and Inverse Scattering For the Novikov-Veselov Equation”, Anal. PDE, 7:2 (2014), 311–343  crossref  mathscinet  zmath  isi  scopus  scopus
    20. Jen-Hsu Chang, “On the $N$-Solitons Solutions in the Novikov–Veselov Equation”, SIGMA, 9 (2013), 006, 13 pp.  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:993
    Full-text PDF :354
    References:126
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025