Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2008, Volume 157, Number 2, Pages 208–216
DOI: https://doi.org/10.4213/tmf6275
(Mi tmf6275)
 

This article is cited in 11 scientific papers (total in 11 papers)

Hamiltonian formalism in the presence of higher derivatives

A. Yu. Morozov

Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
References:
Abstract: We briefly review basic formulas of the Hamiltonian formalism in classical mechanics in the case where the Lagrangian contains N time derivatives of n coordinate variables. For nonlocal models, N=.
Keywords: higher-derivative theory, Hamiltonian mechanics, reparameterization invariance.
Received: 04.02.2008
English version:
Theoretical and Mathematical Physics, 2008, Volume 157, Issue 2, Pages 1542–1549
DOI: https://doi.org/10.1007/s11232-008-0128-2
Bibliographic databases:
Language: Russian
Citation: A. Yu. Morozov, “Hamiltonian formalism in the presence of higher derivatives”, TMF, 157:2 (2008), 208–216; Theoret. and Math. Phys., 157:2 (2008), 1542–1549
Citation in format AMSBIB
\Bibitem{Mor08}
\by A.~Yu.~Morozov
\paper Hamiltonian formalism in the~presence of higher derivatives
\jour TMF
\yr 2008
\vol 157
\issue 2
\pages 208--216
\mathnet{http://mi.mathnet.ru/tmf6275}
\crossref{https://doi.org/10.4213/tmf6275}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2493778}
\zmath{https://zbmath.org/?q=an:1183.70034}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...157.1542M}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 157
\issue 2
\pages 1542--1549
\crossref{https://doi.org/10.1007/s11232-008-0128-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000261657100004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-58149216230}
Linking options:
  • https://www.mathnet.ru/eng/tmf6275
  • https://doi.org/10.4213/tmf6275
  • https://www.mathnet.ru/eng/tmf/v157/i2/p208
  • This publication is cited in the following 11 articles:
    1. Abentin S., Ruiz F.R., “Yang-Mills Model For Centrally Extended 2D Gravity”, Phys. Rev. D, 105:2 (2022), 024054  crossref  mathscinet  isi
    2. Ihor Lubashevsky, Natalie Plavinska, Understanding Complex Systems, Physics of the Human Temporality, 2021, 419  crossref
    3. I. Danilenko, “Modified Hamilton formalism for fields”, Theoret. and Math. Phys., 176:2 (2013), 1067–1086  mathnet  mathnet  crossref  crossref  isi  scopus
    4. Mukherjee P. Paul B., “Gauge Invariances of Higher Derivative Maxwell–Chern–Simons Field Theory: a New Hamiltonian Approach”, Phys. Rev. D, 85:4 (2012), 045028  crossref  adsnasa  isi  elib  scopus  scopus
    5. Ganguly O., “Realisation of a Lorentz Algebra in Lorentz Violating Theory”, Eur. Phys. J. C, 72:11 (2012), 2209  crossref  adsnasa  isi  scopus  scopus
    6. Ganguly O., Gangopadhyay D., Majumdar P., “A Discussion on Lorentz Preserving Scalar Fields in Lorentz Violating Theory”, International Conference on Modern Perspectives of Cosmology and Gravitation (Cosgrav12), Journal of Physics Conference Series, 405, eds. Pal S., Basu B., IOP Publishing Ltd, 2012, 012015  crossref  isi  scopus  scopus
    7. Banerjee R., Mukherjee P., Paul B., “Gauge symmetry and W-algebra in higher derivative systems”, Journal of High Energy Physics, 2011, no. 8, 085  crossref  mathscinet  zmath  isi  scopus  scopus
    8. Kazinski P.O., Shipulya M.A., “Asymptotics of physical solutions to the Lorentz-Dirac equation for planar motion in constant electromagnetic fields”, Phys Rev E, 83:6, Part 2 (2011), 066606  crossref  adsnasa  isi  elib  scopus  scopus
    9. Gegelia J., Scherer S., “Ostrogradsky's Hamilton formalism and quantum corrections”, J. Phys. A, 43:34 (2010), 345406, 9 pp.  crossref  mathscinet  zmath  isi  scopus  scopus
    10. Mironov A., Mironov S., Morozov A., Morozov A., “Resolving puzzles of massive gravity with and without violation of Lorentz symmetry”, Classical Quantum Gravity, 27:12 (2010), 125005, 48 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    11. P. I. Dunin-Barkovskii, A. V. Sleptsov, “Geometric Hamiltonian formalism for reparameterization-invariant theories with higher derivatives”, Theoret. and Math. Phys., 158:1 (2009), 61–81  mathnet  mathnet  crossref  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:816
    Full-text PDF :376
    References:114
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025