Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2008, Volume 157, Number 2, Pages 175–187
DOI: https://doi.org/10.4213/tmf6273
(Mi tmf6273)
 

This article is cited in 20 scientific papers (total in 20 papers)

A nonlinear eigenvalue problem

M. Kh. Chankaeva, A. B. Shabatb

a Karachay-Cherkess State University
b L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
References:
Abstract: We reduce the problem of the zeros of an entire function related to the Painlevé I equation to the eigenvalue problem for the Dirichlet problem for a fourth-order bilinear equation. In a simplified case, this problem reduces to the problem of the position of the zeros of theta functions. We then apply the developed general method to the inverse scattering problem.
Keywords: entire function, Painlevé transcendent, inverse scattering problem.
Received: 13.02.2008
English version:
Theoretical and Mathematical Physics, 2008, Volume 157, Issue 2, Pages 1514–1524
DOI: https://doi.org/10.1007/s11232-008-0126-4
Bibliographic databases:
Language: Russian
Citation: M. Kh. Chankaev, A. B. Shabat, “A nonlinear eigenvalue problem”, TMF, 157:2 (2008), 175–187; Theoret. and Math. Phys., 157:2 (2008), 1514–1524
Citation in format AMSBIB
\Bibitem{ChaSha08}
\by M.~Kh.~Chankaev, A.~B.~Shabat
\paper A~nonlinear eigenvalue problem
\jour TMF
\yr 2008
\vol 157
\issue 2
\pages 175--187
\mathnet{http://mi.mathnet.ru/tmf6273}
\crossref{https://doi.org/10.4213/tmf6273}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2493776}
\zmath{https://zbmath.org/?q=an:1155.81372}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...157.1514C}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 157
\issue 2
\pages 1514--1524
\crossref{https://doi.org/10.1007/s11232-008-0126-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000261657100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-58149268989}
Linking options:
  • https://www.mathnet.ru/eng/tmf6273
  • https://doi.org/10.4213/tmf6273
  • https://www.mathnet.ru/eng/tmf/v157/i2/p175
  • This publication is cited in the following 20 articles:
    1. Sabina De Lis J.C., “Remarks on the Second Neumann Eigenvalue”, Electron. J. Differ. Equ., 2022:13 (2022)  mathscinet  isi
    2. Sabina de Lis J.C., Segura de Leon S., “P-Laplacian Diffusion Coupled to Logistic Reaction: Asymptotic Behavior as P Goes to 1”, Ann. Mat. Pura Appl., 2022  crossref  mathscinet  isi  scopus
    3. Kurki E.-K., Vahakangas A.V., “Weighted Norm Inequalities in a Bounded Domain By the Sparse Domination Method”, Rev. Mat. Complut., 34:2 (2021), 435–467  crossref  mathscinet  isi
    4. Hynd R., Lindgren E., “Large Time Behavior of Solutions of Trudinger'S Equation”, J. Differ. Equ., 274 (2021), 188–230  crossref  mathscinet  isi
    5. Sabina De Lis J.C., Segura De Leon S., “The Limit as P -> 1 of the Higher Eigenvalues of the P-Laplacian Operator -Delta(P)”, Indiana Univ. Math. J., 70:4 (2021), 1395–1439  crossref  mathscinet  isi
    6. Alluhaibi N., Ali A., “The Eigenvalue Estimates of P-Laplacian of Totally Real Submanifolds in Generalized Complex Space Forms”, Ric. Mat., 2021  crossref  isi
    7. Mukherjee Sh., “On Minimax Characterization in Non-Linear Eigenvalue Problems”, Bruno Pini Math. Anal. Semin., 12:1 (2021), 81–100  isi
    8. Manfredi G., “Is the Cosmological Constant An Eigenvalue?”, Gen. Relativ. Gravit., 53:3 (2021), 31  crossref  mathscinet  isi
    9. Farcaseanu M., Grecu A., Mihailescu M., Stancu-Dumitru D., “Perturbed Eigenvalue Problems: An Overview”, Stud. Univ. Babes-Bolyai Math., 66:1 (2021), 55–73  crossref  mathscinet  isi
    10. Esposito L., Roy P., Sk F., “On the Asymptotic Behavior of the Eigenvalues of Nonlinear Elliptic Problems in Domains Becoming Unbounded”, Asymptotic Anal., 123:1-2 (2021), 79–94  crossref  mathscinet  isi
    11. Colbois B., Provenzano L., “Conformal Upper Bounds For the Eigenvalues of the P-Laplacian”, J. Lond. Math. Soc.-Second Ser., 104:5 (2021), 2128–2147  crossref  mathscinet  isi
    12. de la Calle Ysern B., Sabina de Lis J.C., Segura de Leon S., “The Convective Eigenvalues of the One-Dimensional P-Laplacian as P -> 1”, J. Math. Anal. Appl., 484:1 (2020), 123738  crossref  mathscinet  isi
    13. Hoeg F.A., “Concave Power Solutions of the Dominative P-Laplace Equation”, NoDea-Nonlinear Differ. Equ. Appl., 27:2 (2020), 19  crossref  mathscinet  isi
    14. El-Ferik S., Al-Rawashdeh Ya.M., Lewis F.L., “A Framework of Multiagent Systems Behavioral Control Under State-Dependent Network Protocols”, IEEE Trans. Control Netw. Syst., 7:2 (2020), 734–746  crossref  mathscinet  isi
    15. Khaled M., Rhoudaf M., Sabiki H., “Lagrange Multiplier Rule to a Nonlinear Eigenvalue Problem in Musielak-Orlicz Spaces”, Numer. Funct. Anal. Optim., 41:2 (2020), 134–157  crossref  mathscinet  isi
    16. Bozorgnia F., Mohammadi S.A., Vejchodsky T., “The First Eigenvalue and Eigenfunction of a Nonlinear Elliptic System”, Appl. Numer. Math., 145 (2019), 159–174  crossref  mathscinet  isi
    17. Fusco N., Mukherjee Sh., Zhang Y.R.-Ya., “A Variational Characterisation of the Second Eigenvalue of the P-Laplacian on Quasi Open Sets”, Proc. London Math. Soc., 119:3 (2019), 579–612  crossref  mathscinet  isi
    18. Chiappinelli R., “Nonlinear Rayleigh Quotients and Nonlinear Spectral Theory”, Symmetry-Basel, 11:7 (2019), 928  crossref  isi
    19. Della Pietra F., Gavitone N., Piscitelli G., “On the Second Dirichlet Eigenvalue of Some Nonlinear Anisotropic Elliptic Operators”, Bull. Sci. Math., 155 (2019), 10–32  crossref  mathscinet  isi
    20. V. Yu. Novokshenov, “Padé approximations for Painlevé I and II transcendents”, Theoret. and Math. Phys., 159:3 (2009), 853–862  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:802
    Full-text PDF :304
    References:97
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025