Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2008, Volume 156, Number 2, Pages 184–188
DOI: https://doi.org/10.4213/tmf6239
(Mi tmf6239)
 

This article is cited in 1 scientific paper (total in 1 paper)

Differential equation for a functional integral

P. L. Rubin

P. N. Lebedev Physical Institute, Russian Academy of Sciences
Full-text PDF (319 kB) Citations (1)
References:
Abstract: We propose a new method for calculating functional integrals in cases where the averaged (integrated) functional depends on functions of more than one variable. The method is analogous to that used by Feynman in the one-dimensional case (quantum mechanics). We consider the integration of functionals that depend on functions of two variables and are symmetric under rotations about a point in the plane. We assume that the functional integral is taken over functions defined in a finite spatial domain (in a disc of radius $r$). We obtain a differential equation describing change in the functional as the radius $r$ increases.
Keywords: functional integral, boundary conditions.
Received: 08.05.2007
Revised: 08.10.2007
English version:
Theoretical and Mathematical Physics, 2008, Volume 156, Issue 2, Pages 1123–1126
DOI: https://doi.org/10.1007/s11232-008-0082-z
Bibliographic databases:
Language: Russian
Citation: P. L. Rubin, “Differential equation for a functional integral”, TMF, 156:2 (2008), 184–188; Theoret. and Math. Phys., 156:2 (2008), 1123–1126
Citation in format AMSBIB
\Bibitem{Rub08}
\by P.~L.~Rubin
\paper Differential equation for a~functional integral
\jour TMF
\yr 2008
\vol 156
\issue 2
\pages 184--188
\mathnet{http://mi.mathnet.ru/tmf6239}
\crossref{https://doi.org/10.4213/tmf6239}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2490247}
\zmath{https://zbmath.org/?q=an:1151.81353}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...156.1123R}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 156
\issue 2
\pages 1123--1126
\crossref{https://doi.org/10.1007/s11232-008-0082-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000259085400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-51549089115}
Linking options:
  • https://www.mathnet.ru/eng/tmf6239
  • https://doi.org/10.4213/tmf6239
  • https://www.mathnet.ru/eng/tmf/v156/i2/p184
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:617
    Full-text PDF :254
    References:109
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024