Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2008, Volume 156, Number 2, Pages 189–206
DOI: https://doi.org/10.4213/tmf6240
(Mi tmf6240)
 

This article is cited in 17 scientific papers (total in 17 papers)

Integrable magnetic geodesic flows on Lie groups

A. A. Magazeva, I. V. Shirokova, Yu. A. Yurevichb

a Irtysh Branch of Novosibirsk State Academy of Water Transport
b Omsk State University
References:
Abstract: On Lie group manifolds, we consider right-invariant magnetic geodesic flows associated with 2-cocycles of the corresponding Lie algebras. We investigate the algebra of the integrals of motion of magnetic geodesic flows and also formulate a necessary and sufficient condition for their integrability in quadratures, giving the canonical forms of 2-cocycles for all four-dimensional Lie algebras and selecting integrable cases.
Keywords: Lie group, Lie algebra, cocycle, magnetic geodesic flow, integral of motion, Poisson bracket.
Received: 19.01.2007
Revised: 02.07.2007
English version:
Theoretical and Mathematical Physics, 2008, Volume 156, Issue 2, Pages 1127–1141
DOI: https://doi.org/10.1007/s11232-008-0083-y
Bibliographic databases:
Language: Russian
Citation: A. A. Magazev, I. V. Shirokov, Yu. A. Yurevich, “Integrable magnetic geodesic flows on Lie groups”, TMF, 156:2 (2008), 189–206; Theoret. and Math. Phys., 156:2 (2008), 1127–1141
Citation in format AMSBIB
\Bibitem{MagShiYur08}
\by A.~A.~Magazev, I.~V.~Shirokov, Yu.~A.~Yurevich
\paper Integrable magnetic geodesic flows on Lie groups
\jour TMF
\yr 2008
\vol 156
\issue 2
\pages 189--206
\mathnet{http://mi.mathnet.ru/tmf6240}
\crossref{https://doi.org/10.4213/tmf6240}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2490248}
\zmath{https://zbmath.org/?q=an:1151.37049}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...156.1127M}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 156
\issue 2
\pages 1127--1141
\crossref{https://doi.org/10.1007/s11232-008-0083-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000259085400003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-51549084484}
Linking options:
  • https://www.mathnet.ru/eng/tmf6240
  • https://doi.org/10.4213/tmf6240
  • https://www.mathnet.ru/eng/tmf/v156/i2/p189
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024