Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2008, Volume 156, Number 2, Pages 163–183
DOI: https://doi.org/10.4213/tmf6238
(Mi tmf6238)
 

This article is cited in 16 scientific papers (total in 16 papers)

Quadratic algebras related to elliptic curves

A. V. Zotovab, A. M. Levinbc, M. A. Olshanetskya, Yu. B. Chernyakova

a Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
b Max Planck Institute for Mathematics
c P. P. Shirshov institute of Oceanology of RAS
References:
Abstract: We construct quadratic finite-dimensional Poisson algebras corresponding to a rank-N degree-one vector bundle over an elliptic curve with n marked points and also construct the quantum version of the algebras. The algebras are parameterized by the moduli of curves. For N=2 and n=1, they coincide with Sklyanin algebras. We prove that the Poisson structure is compatible with the Lie–Poisson structure defined on the direct sum of n copies of sl(N). The origin of the algebras is related to the Poisson reduction of canonical brackets on an affine space over the bundle cotangent to automorphism groups of vector bundles.
Keywords: Poisson structure, integrable system.
Received: 14.08.2007
English version:
Theoretical and Mathematical Physics, 2008, Volume 156, Issue 2, Pages 1103–1122
DOI: https://doi.org/10.1007/s11232-008-0081-0
Bibliographic databases:
Language: Russian
Citation: A. V. Zotov, A. M. Levin, M. A. Olshanetsky, Yu. B. Chernyakov, “Quadratic algebras related to elliptic curves”, TMF, 156:2 (2008), 163–183; Theoret. and Math. Phys., 156:2 (2008), 1103–1122
Citation in format AMSBIB
\Bibitem{ZotLevOls08}
\by A.~V.~Zotov, A.~M.~Levin, M.~A.~Olshanetsky, Yu.~B.~Chernyakov
\paper Quadratic algebras related to elliptic curves
\jour TMF
\yr 2008
\vol 156
\issue 2
\pages 163--183
\mathnet{http://mi.mathnet.ru/tmf6238}
\crossref{https://doi.org/10.4213/tmf6238}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2490246}
\zmath{https://zbmath.org/?q=an:1160.37023}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...156.1103Z}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 156
\issue 2
\pages 1103--1122
\crossref{https://doi.org/10.1007/s11232-008-0081-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000259085400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-51549083902}
Linking options:
  • https://www.mathnet.ru/eng/tmf6238
  • https://doi.org/10.4213/tmf6238
  • https://www.mathnet.ru/eng/tmf/v156/i2/p163
  • This publication is cited in the following 16 articles:
    1. E. Trunina, A. Zotov, “Lax equations for relativistic GL(NM,C) Gaudin models on elliptic curve”, J. Phys. A, 55:39 (2022), 395202–31  mathnet  crossref
    2. A. Zabrodin, A. Zotov, “Field analogue of the Ruijsenaars–Schneider model”, JHEP, 2022:7 (2022), 23–51  mathnet  crossref  scopus
    3. I. A. Sechin, A. V. Zotov, “Quadratic algebras based on SL(NM) elliptic quantum R-matrices”, Theoret. and Math. Phys., 208:2 (2021), 1156–1164  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    4. Krasnov T. Zotov A., “Trigonometric Integrable Tops From Solutions of Associative Yang-Baxter Equation”, Ann. Henri Poincare, 20:8 (2019), 2671–2697  crossref  mathscinet  isi
    5. Zotov A., “Relativistic Elliptic Matrix Tops and Finite Fourier Transformations”, Mod. Phys. Lett. A, 32:32 (2017), 1750169  crossref  mathscinet  zmath  isi  scopus
    6. A. M. Levin, M. A. Olshanetsky, A. V. Zotov, “Geometry of Higgs bundles over elliptic curves related to automorphisms of simple Lie algebras, Calogero–Moser systems, and KZB equations”, Theoret. and Math. Phys., 188:2 (2016), 1121–1154  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    7. Levin A. Olshanetsky M. Zotov A., “Classical Integrable Systems and Soliton Equations Related To Eleven-Vertex R-Matrix”, Nucl. Phys. B, 887 (2014), 400–422  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    8. Aminov G. Arthamonov S. Smirnov A. Zotov A., “Rational TOP and Its Classical R-Matrix”, J. Phys. A-Math. Theor., 47:30 (2014), 305207  crossref  mathscinet  zmath  isi  scopus  scopus
    9. Levin A. Olshanetsky M. Zotov A., “Relativistic Classical Integrable Tops and Quantum R-Matrices”, J. High Energy Phys., 2014, no. 7, 012  crossref  isi  scopus  scopus
    10. Levin A. Olshanetsky M. Smirnov A. Zotov A., “Characteristic Classes of Sl(N, C)-Bundles and Quantum Dynamical Elliptic R-Matrices”, J. Phys. A-Math. Theor., 46:3 (2013), 035201  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    11. A. V. Zotov, A. V. Smirnov, “Modifications of bundles, elliptic integrable systems, and related problems”, Theoret. and Math. Phys., 177:1 (2013), 1281–1338  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    12. Rains E., Ruijsenaars S., “Difference Operators of Sklyanin and Van Diejen Type”, Commun. Math. Phys., 320:3 (2013), 851–889  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    13. Mironov A., Morozov A., Runov B., Zenkevich Y., Zotov A., “Spectral Duality Between Heisenberg Chain and Gaudin Model”, Lett. Math. Phys., 103:3 (2013), 299–329  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    14. Aminov G., Mironov A., Morozov A., Zotov A., “Three-Particle Integrable Systems with Elliptic Dependence on Momenta and Theta Function Identities”, Phys. Lett. B, 726:4-5 (2013), 802–808  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    15. Andrey M. Levin, Mikhail A. Olshanetsky, Andrey V. Smirnov, Andrei V. Zotov, “Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-Trivial Bundles”, SIGMA, 8 (2012), 095, 37 pp.  mathnet  crossref  mathscinet
    16. Andrei V. Zotov, “1+1 Gaudin Model”, SIGMA, 7 (2011), 067, 26 pp.  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:694
    Full-text PDF :270
    References:95
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025