|
This article is cited in 1 scientific paper (total in 1 paper)
General form of the deformation of the Poisson superbracket on a $(2,n)$-dimensional superspace
S. E. Konstein, I. V. Tyutin P. N. Lebedev Physical Institute, Russian Academy of Sciences
Abstract:
Up to an equivalence transformation, we describe continuous formal
deformations of the Poisson superbracket defined on compactly supported
smooth functions on $\mathbb R^2$ taking values in a Grassmann algebra $\mathbb G^{n_-}$.
Keywords:
cohomology of Lie algebras, deformation of Lie algebras, Poisson superbracket, quantization.
Received: 04.04.2007
Citation:
S. E. Konstein, I. V. Tyutin, “General form of the deformation of the Poisson superbracket on a $(2,n)$-dimensional superspace”, TMF, 155:2 (2008), 265–286; Theoret. and Math. Phys., 155:2 (2008), 734–753
Linking options:
https://www.mathnet.ru/eng/tmf6210https://doi.org/10.4213/tmf6210 https://www.mathnet.ru/eng/tmf/v155/i2/p265
|
Statistics & downloads: |
Abstract page: | 401 | Full-text PDF : | 194 | References: | 75 | First page: | 8 |
|