Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2008, Volume 155, Number 2, Pages 287–300
DOI: https://doi.org/10.4213/tmf6211
(Mi tmf6211)
 

This article is cited in 12 scientific papers (total in 12 papers)

Spectrum of the two-particle Schrödinger operator on a lattice

S. N. Lakaeva, A. M. Khalkhuzhaevb

a A. Navoi Samarkand State University
b Institute of Study of Regional Problems, Uzbekistan Academy of Sciences, Samarkand Branch
References:
Abstract: We consider the family of two-particle discrete Schrödinger operators H(k)H(k) associated with the Hamiltonian of a system of two fermions on a νν-dimensional lattice Zν, ν1, where kTν(π,π]ν is a two-particle quasimomentum. We prove that the operator H(k), kTν, k0, has an eigenvalue to the left of the essential spectrum for any dimension ν=1,2, if the operator H(0) has a virtual level (ν=1,2) or an eigenvalue (ν3) at the bottom of the essential spectrum (of the two-particle continuum).
Keywords: spectral properties, two-particle discrete Schrödinger operator, Birman–Schwinger principle, virtual level, eigenvalue.
Received: 20.12.2005
Revised: 24.07.2007
English version:
Theoretical and Mathematical Physics, 2008, Volume 155, Issue 2, Pages 754–765
DOI: https://doi.org/10.1007/s11232-008-0064-1
Bibliographic databases:
Language: Russian
Citation: S. N. Lakaev, A. M. Khalkhuzhaev, “Spectrum of the two-particle Schrödinger operator on a lattice”, TMF, 155:2 (2008), 287–300; Theoret. and Math. Phys., 155:2 (2008), 754–765
Citation in format AMSBIB
\Bibitem{LakKha08}
\by S.~N.~Lakaev, A.~M.~Khalkhuzhaev
\paper Spectrum of the~two-particle Schr\"odinger operator on a~lattice
\jour TMF
\yr 2008
\vol 155
\issue 2
\pages 287--300
\mathnet{http://mi.mathnet.ru/tmf6211}
\crossref{https://doi.org/10.4213/tmf6211}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2446133}
\zmath{https://zbmath.org/?q=an:1146.81027}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...155..754L}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 155
\issue 2
\pages 754--765
\crossref{https://doi.org/10.1007/s11232-008-0064-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000256083500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-43949120431}
Linking options:
  • https://www.mathnet.ru/eng/tmf6211
  • https://doi.org/10.4213/tmf6211
  • https://www.mathnet.ru/eng/tmf/v155/i2/p287
  • This publication is cited in the following 12 articles:
    1. Ahmad Khalkhuzhaev, Shakhobiddin Khamidov, Habibullo Mahmudov, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 020007  crossref
    2. Janikul Abdullaev, Ahmad Khalkhuzhaev, Khabibullo Makhmudov, “DISCRETE SPECTRUM ASYMPTOTICS FOR THE TWO-PARTICLE SCHRÖDINGER OPERATOR ON A LATTICE”, J Math Sci, 2024  crossref
    3. J. I. Abdullaev, Sh. H. Ergashova, “Eigenvalues of the Schrödinger Operator Corresponding to a System of Three Fermions on a One Dimensional Lattice”, Lobachevskii J Math, 45:8 (2024), 3821  crossref
    4. Firdavs Almuratov, Salokhiddin Alimov, INTERNATIONAL SCIENTIFIC CONFERENCE ON MODERN PROBLEMS OF APPLIED SCIENCE AND ENGINEERING: MPASE2024, 3244, INTERNATIONAL SCIENTIFIC CONFERENCE ON MODERN PROBLEMS OF APPLIED SCIENCE AND ENGINEERING: MPASE2024, 2024, 020051  crossref
    5. Zh. I. Abdullaev, A. M. Khalkhuzhaev, I. S. Shotemirov, “O beskonechnosti chisla sobstvennykh znachenii dvukhchastichnogo operatora Shredingera na reshetke”, Izv. vuzov. Matem., 2024, no. 12, 3–11  mathnet  crossref
    6. J. I. Abdullaev, A. M. Khalkhuzhaev, Kh. Sh. Makhmudov, “The Infiniteness of the Number of Eigenvalues of the Schrödinger Operator of a System of Two Particles on a Lattice”, Lobachevskii J Math, 45:10 (2024), 4828  crossref
    7. J. I. Abdullaev, A. M. Khalkhuzhaev, Yu. S. Shotemirov, “On the Infinite Number of Eigenvalues of the Two-Particle Schrödinger Operator on a Lattice”, Russ Math., 68:12 (2024), 25  crossref
    8. Zh. I. Abdullaev, A. M. Khalkhuzhaev, I. A. Khujamiyorov, “Existence condition of an eigenvalue of the three particle Schrödinger operator on a lattice”, Russian Math. (Iz. VUZ), 67:2 (2023), 1–22  mathnet  crossref  crossref
    9. Abdullaev I J. Khalkhuzhaev A.M. Usmonov L.S., “Monotonicity of the Eigenvalues of the Two-Particle Schrodinger Operatoron a Lattice”, Nanosyst.-Phys. Chem. Math., 12:6 (2021), 657–663  crossref  isi
    10. Yu. P. Chuburin, “Two-particle scattering in a periodic medium”, Theoret. and Math. Phys., 191:2 (2017), 738–751  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    11. A. M. Khalkhuzhaev, “Essential spectrum of three-particle discrete operator corresponding to a system of three fermions on a lattice”, Russian Math. (Iz. VUZ), 61:9 (2017), 67–78  mathnet  crossref  isi
    12. T. S. Tinyukova, “Issledovanie raznostnogo uravneniya Shredingera dlya nekotorykh fizicheskikh modelei”, Izv. IMI UdGU, 2013, no. 2(42), 3–57  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:569
    Full-text PDF :292
    References:103
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025