Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2008, Volume 155, Number 2, Pages 287–300
DOI: https://doi.org/10.4213/tmf6211
(Mi tmf6211)
 

This article is cited in 9 scientific papers (total in 9 papers)

Spectrum of the two-particle Schrödinger operator on a lattice

S. N. Lakaeva, A. M. Khalkhuzhaevb

a A. Navoi Samarkand State University
b Institute of Study of Regional Problems, Uzbekistan Academy of Sciences, Samarkand Branch
Full-text PDF (450 kB) Citations (9)
References:
Abstract: We consider the family of two-particle discrete Schrödinger operators $H(k)$ associated with the Hamiltonian of a system of two fermions on a $\nu$-dimensional lattice $\mathbb Z^{\nu}$, $\nu\geq 1$, where $k\in\mathbb T^{\nu}\equiv(-\pi,\pi]^{\nu}$ is a two-particle quasimomentum. We prove that the operator $H(k)$, $k\in\mathbb T^{\nu}$, $k\ne0$, has an eigenvalue to the left of the essential spectrum for any dimension $\nu=1,2,\dots$ if the operator $H(0)$ has a virtual level ($\nu=1,2$) or an eigenvalue ($\nu\geq 3$) at the bottom of the essential spectrum (of the two-particle continuum).
Keywords: spectral properties, two-particle discrete Schrödinger operator, Birman–Schwinger principle, virtual level, eigenvalue.
Received: 20.12.2005
Revised: 24.07.2007
English version:
Theoretical and Mathematical Physics, 2008, Volume 155, Issue 2, Pages 754–765
DOI: https://doi.org/10.1007/s11232-008-0064-1
Bibliographic databases:
Language: Russian
Citation: S. N. Lakaev, A. M. Khalkhuzhaev, “Spectrum of the two-particle Schrödinger operator on a lattice”, TMF, 155:2 (2008), 287–300; Theoret. and Math. Phys., 155:2 (2008), 754–765
Citation in format AMSBIB
\Bibitem{LakKha08}
\by S.~N.~Lakaev, A.~M.~Khalkhuzhaev
\paper Spectrum of the~two-particle Schr\"odinger operator on a~lattice
\jour TMF
\yr 2008
\vol 155
\issue 2
\pages 287--300
\mathnet{http://mi.mathnet.ru/tmf6211}
\crossref{https://doi.org/10.4213/tmf6211}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2446133}
\zmath{https://zbmath.org/?q=an:1146.81027}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...155..754L}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 155
\issue 2
\pages 754--765
\crossref{https://doi.org/10.1007/s11232-008-0064-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000256083500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-43949120431}
Linking options:
  • https://www.mathnet.ru/eng/tmf6211
  • https://doi.org/10.4213/tmf6211
  • https://www.mathnet.ru/eng/tmf/v155/i2/p287
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:545
    Full-text PDF :280
    References:97
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024