Abstract:
We consider the family of two-particle discrete Schrödinger operators
H(k)H(k) associated with the Hamiltonian of a system of two fermions on
a νν-dimensional lattice Zν, ν≥1, where
k∈Tν≡(−π,π]ν is a two-particle quasimomentum. We
prove that the operator H(k), k∈Tν, k≠0, has an eigenvalue
to the left of the essential spectrum for any dimension ν=1,2,… if
the operator H(0) has a virtual level (ν=1,2) or an eigenvalue
(ν≥3) at the bottom of the essential spectrum (of the two-particle
continuum).
Citation:
S. N. Lakaev, A. M. Khalkhuzhaev, “Spectrum of the two-particle Schrödinger operator on a lattice”, TMF, 155:2 (2008), 287–300; Theoret. and Math. Phys., 155:2 (2008), 754–765
This publication is cited in the following 12 articles:
Ahmad Khalkhuzhaev, Shakhobiddin Khamidov, Habibullo Mahmudov, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 020007
Janikul Abdullaev, Ahmad Khalkhuzhaev, Khabibullo Makhmudov, “DISCRETE SPECTRUM ASYMPTOTICS FOR THE TWO-PARTICLE SCHRÖDINGER OPERATOR ON A LATTICE”, J Math Sci, 2024
J. I. Abdullaev, Sh. H. Ergashova, “Eigenvalues of the Schrödinger Operator Corresponding to a System of Three Fermions on a One Dimensional Lattice”, Lobachevskii J Math, 45:8 (2024), 3821
Firdavs Almuratov, Salokhiddin Alimov, INTERNATIONAL SCIENTIFIC CONFERENCE ON MODERN PROBLEMS OF APPLIED SCIENCE AND ENGINEERING: MPASE2024, 3244, INTERNATIONAL SCIENTIFIC CONFERENCE ON MODERN PROBLEMS OF APPLIED SCIENCE AND ENGINEERING: MPASE2024, 2024, 020051
Zh. I. Abdullaev, A. M. Khalkhuzhaev, I. S. Shotemirov, “O beskonechnosti chisla sobstvennykh znachenii dvukhchastichnogo operatora Shredingera na reshetke”, Izv. vuzov. Matem., 2024, no. 12, 3–11
J. I. Abdullaev, A. M. Khalkhuzhaev, Kh. Sh. Makhmudov, “The Infiniteness of the Number of Eigenvalues of the Schrödinger Operator of a System of Two Particles on a Lattice”, Lobachevskii J Math, 45:10 (2024), 4828
J. I. Abdullaev, A. M. Khalkhuzhaev, Yu. S. Shotemirov, “On the Infinite Number of Eigenvalues of the Two-Particle Schrödinger Operator on a Lattice”, Russ Math., 68:12 (2024), 25
Zh. I. Abdullaev, A. M. Khalkhuzhaev, I. A. Khujamiyorov, “Existence condition of an eigenvalue of the three particle Schrödinger operator on a lattice”, Russian Math. (Iz. VUZ), 67:2 (2023), 1–22
Abdullaev I J. Khalkhuzhaev A.M. Usmonov L.S., “Monotonicity of the Eigenvalues of the Two-Particle Schrodinger Operatoron a Lattice”, Nanosyst.-Phys. Chem. Math., 12:6 (2021), 657–663
Yu. P. Chuburin, “Two-particle scattering in a periodic medium”, Theoret. and Math. Phys., 191:2 (2017), 738–751
A. M. Khalkhuzhaev, “Essential spectrum of three-particle discrete operator corresponding to a system of three fermions on a lattice”, Russian Math. (Iz. VUZ), 61:9 (2017), 67–78
T. S. Tinyukova, “Issledovanie raznostnogo uravneniya Shredingera dlya nekotorykh fizicheskikh modelei”, Izv. IMI UdGU, 2013, no. 2(42), 3–57