Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2008, Volume 155, Number 2, Pages 252–264
DOI: https://doi.org/10.4213/tmf6209
(Mi tmf6209)
 

This article is cited in 23 scientific papers (total in 23 papers)

Euler integral symmetries for a deformed Heun equation and symmetries of the Painlevé PVI equation

A. Ya. Kazakova, S. Yu. Slavyanovb

a Saint-Petersburg State University of Aerospace Instrumentation
b Saint-Petersburg State University
References:
Abstract: Euler integral transformations relate solutions of ordinary linear differential equations and generate integral representations of the solutions in a number of cases or relations between solutions of constrained equations (Euler symmetries) in some other cases. These relations lead to the corresponding symmetries of the monodromy matrices. We discuss Euler symmetries in the case of the simplest Fuchsian system that is equivalent to a deformed Heun equation, which is in turn related to the Painlevé PVI equation. The existence of integral symmetries of the deformed Heun equation leads to the corresponding symmetries of the PVI equation.
Keywords: Euler transformation, Heun equation, Painlevé equation.
Received: 29.10.2007
English version:
Theoretical and Mathematical Physics, 2008, Volume 155, Issue 2, Pages 722–733
DOI: https://doi.org/10.1007/s11232-008-0062-3
Bibliographic databases:
Language: Russian
Citation: A. Ya. Kazakov, S. Yu. Slavyanov, “Euler integral symmetries for a deformed Heun equation and symmetries of the Painlevé PVI equation”, TMF, 155:2 (2008), 252–264; Theoret. and Math. Phys., 155:2 (2008), 722–733
Citation in format AMSBIB
\Bibitem{KazSla08}
\by A.~Ya.~Kazakov, S.~Yu.~Slavyanov
\paper Euler integral symmetries for a~deformed Heun equation and symmetries
of the~Painlev\'e~PVI equation
\jour TMF
\yr 2008
\vol 155
\issue 2
\pages 252--264
\mathnet{http://mi.mathnet.ru/tmf6209}
\crossref{https://doi.org/10.4213/tmf6209}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2446131}
\zmath{https://zbmath.org/?q=an:1173.34057}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...155..722K}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 155
\issue 2
\pages 722--733
\crossref{https://doi.org/10.1007/s11232-008-0062-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000256083500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-43949100661}
Linking options:
  • https://www.mathnet.ru/eng/tmf6209
  • https://doi.org/10.4213/tmf6209
  • https://www.mathnet.ru/eng/tmf/v155/i2/p252
  • This publication is cited in the following 23 articles:
    1. Kouichi Takemura, 2021 Days on Diffraction (DD), 2021, 152  crossref
    2. A. Ya. Kazakov, “Integralnaya simmetriya Eilera i asimptotika monodromii dlya uravnenii Goina”, Matematicheskie voprosy teorii rasprostraneniya voln. 50, Posvyaschaetsya devyanostoletiyu Vasiliya Mikhailovicha BABIChA, Zap. nauchn. sem. POMI, 493, POMI, SPb., 2020, 186–199  mathnet
    3. Babich M., Slavyanov S., “Antiquantization, Isomonodromy, and Integrability”, J. Math. Phys., 59:9, SI (2018), 091416  crossref  mathscinet  zmath  isi  scopus
    4. M. V. Babich, S. Yu. Slavyanov, “Links from second-order Fuchsian equations to first-order linear systems”, J. Math. Sci. (N. Y.), 240:5 (2019), 646–650  mathnet  mathnet  crossref  scopus
    5. S. Yu. Slavyanov, “Symmetries and apparent singularities for the simplest Fuchsian equations”, Theoret. and Math. Phys., 193:3 (2017), 1754–1760  mathnet  crossref  crossref  adsnasa  isi  elib
    6. Takemura K., “Integral Transformation of Heun'S Equation and Some Applications”, J. Math. Soc. Jpn., 69:2 (2017), 849–891  crossref  mathscinet  zmath  isi  scopus  scopus
    7. S. Yu. Slavyanov, D. F. Shat'ko, A. M. Ishkhanyan, T. A. Rotinyan, “Generation and removal of apparent singularities in linear ordinary differential equations with polynomial coefficients”, Theoret. and Math. Phys., 189:3 (2016), 1726–1733  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. S. Yu. Slavyanov, O. L. Stesik, “Symbolic generation of Painlevé equations”, J. Math. Sci. (N. Y.), 224:2 (2017), 345–348  mathnet  crossref  mathscinet
    9. Ishkhanyan A.M., “A singular Lambert- W Schrödinger potential exactly solvable in terms of the confluent hypergeometric functions”, Mod. Phys. Lett. A, 31:33 (2016), 1650177  crossref  mathscinet  zmath  isi  elib  scopus
    10. Chen Zh., Kuo T.-J., Lin Ch.-Sh., “Hamiltonian system for the elliptic form of Painlevé VI equation”, J. Math. Pures Appl., 106:3 (2016), 546–581  crossref  mathscinet  zmath  isi  elib  scopus
    11. S. Yu. Slavyanov, “Polynomial degree reduction of a Fuchsian 2×2 system”, Theoret. and Math. Phys., 182:2 (2015), 182–188  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    12. Leroy C., Ishkhanyan A.M., “Expansions of the Solutions of the Confluent Heun Equation in Terms of the Incomplete Beta and the Appell Generalized Hypergeometric Functions”, Integral Transform. Spec. Funct., 26:6 (2015), 451–459  crossref  mathscinet  zmath  isi  scopus  scopus
    13. J. Math. Sci. (N. Y.), 209:6 (2015), 910–921  mathnet  crossref
    14. S. Yu. Slavyanov, “Antiquantization and the corresponding symmetries”, Theoret. and Math. Phys., 185:1 (2015), 1522–1526  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    15. Shahverdyan T.A., Ishkhanyan T.A., Grigoryan A.E., Ishkhanyan A.M., “Analytic Solutions of the Quantum Two-State Problem in Terms of the Double, Bi- and Triconfluent Heun Functions”, J. Contemp. Phys.-Armen. Acad. Sci., 50:3 (2015), 211–226  crossref  mathscinet  isi  scopus
    16. Slavyanov S.Y., “Relations Between Linear Equations and Painlevé'S Equations”, Constr. Approx., 39:1, SI (2014), 75–83  crossref  mathscinet  zmath  isi  scopus  scopus
    17. A. Ya. Kazakov, S. Yu. Slavyanov, “Euler integral symmetries for the confluent Heun equation and symmetries of the Painlevé equation PV”, Theoret. and Math. Phys., 179:2 (2014), 543–549  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    18. A. Ya. Kazakov, “Integral symmetry for the confluent Heun equation with added apparent singularity”, J. Math. Sci. (N. Y.), 214:3 (2016), 268–276  mathnet  crossref  mathscinet
    19. Kazakov A.Ya., Slavyanov S.Yu., “Integral Symmetries for Confluent Heun Equations and Symmetries of Painlevé Equation P-5”, Painleve Equations and Related Topics (2012), Degruyter Proceedings in Mathematics, eds. Bruno A., Batkhin A., Walter de Gruyter & Co, 2012, 237–239  crossref  mathscinet  isi
    20. S.Yu. Slavyanov, A.Ya. Kazakov, F. R. Vukajlović, “RELATIONS BETWEEN HEUN EQUATIONS AND PAINLEVE EQUATIONS”, Albanian J. Math., 4:4 (2010)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:713
    Full-text PDF :227
    References:90
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025