Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2008, Volume 155, Number 2, Pages 252–264
DOI: https://doi.org/10.4213/tmf6209
(Mi tmf6209)
 

This article is cited in 23 scientific papers (total in 23 papers)

Euler integral symmetries for a deformed Heun equation and symmetries of the Painlevé PVI equation

A. Ya. Kazakova, S. Yu. Slavyanovb

a Saint-Petersburg State University of Aerospace Instrumentation
b Saint-Petersburg State University
References:
Abstract: Euler integral transformations relate solutions of ordinary linear differential equations and generate integral representations of the solutions in a number of cases or relations between solutions of constrained equations (Euler symmetries) in some other cases. These relations lead to the corresponding symmetries of the monodromy matrices. We discuss Euler symmetries in the case of the simplest Fuchsian system that is equivalent to a deformed Heun equation, which is in turn related to the Painlevé PVI equation. The existence of integral symmetries of the deformed Heun equation leads to the corresponding symmetries of the PVI equation.
Keywords: Euler transformation, Heun equation, Painlevé equation.
Received: 29.10.2007
English version:
Theoretical and Mathematical Physics, 2008, Volume 155, Issue 2, Pages 722–733
DOI: https://doi.org/10.1007/s11232-008-0062-3
Bibliographic databases:
Language: Russian
Citation: A. Ya. Kazakov, S. Yu. Slavyanov, “Euler integral symmetries for a deformed Heun equation and symmetries of the Painlevé PVI equation”, TMF, 155:2 (2008), 252–264; Theoret. and Math. Phys., 155:2 (2008), 722–733
Citation in format AMSBIB
\Bibitem{KazSla08}
\by A.~Ya.~Kazakov, S.~Yu.~Slavyanov
\paper Euler integral symmetries for a~deformed Heun equation and symmetries
of the~Painlev\'e~PVI equation
\jour TMF
\yr 2008
\vol 155
\issue 2
\pages 252--264
\mathnet{http://mi.mathnet.ru/tmf6209}
\crossref{https://doi.org/10.4213/tmf6209}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2446131}
\zmath{https://zbmath.org/?q=an:1173.34057}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...155..722K}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 155
\issue 2
\pages 722--733
\crossref{https://doi.org/10.1007/s11232-008-0062-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000256083500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-43949100661}
Linking options:
  • https://www.mathnet.ru/eng/tmf6209
  • https://doi.org/10.4213/tmf6209
  • https://www.mathnet.ru/eng/tmf/v155/i2/p252
  • This publication is cited in the following 23 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:685
    Full-text PDF :216
    References:83
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024