Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2007, Volume 151, Number 3, Pages 495–509
DOI: https://doi.org/10.4213/tmf6062
(Mi tmf6062)
 

This article is cited in 16 scientific papers (total in 16 papers)

Jacobi's last multiplier, Lie symmetries, and hidden linearity: "Goldfishes" galore

M. C. Nucci

Università degli Studi di Perugia
References:
Abstract: In addition to the reduction method, we present a novel application of Jacobi's last multiplier for finding Lie symmetries of ordinary differential equations algorithmically. These methods and Lie symmetries allow unveiling the hidden linearity of certain nonlinear equations that are relevant in physics. We consider the Einstein–Yang–Mills equations and Calogero's many-body problem in the plane as examples.
Keywords: Lie group analysis, first integral, Jacobi's last multiplier.
English version:
Theoretical and Mathematical Physics, 2007, Volume 151, Issue 3, Pages 851–862
DOI: https://doi.org/10.1007/s11232-007-0070-8
Bibliographic databases:
Language: Russian
Citation: M. C. Nucci, “Jacobi's last multiplier, Lie symmetries, and hidden linearity: "Goldfishes" galore”, TMF, 151:3 (2007), 495–509; Theoret. and Math. Phys., 151:3 (2007), 851–862
Citation in format AMSBIB
\Bibitem{Nuc07}
\by M.~C.~Nucci
\paper Jacobi's last multiplier, Lie symmetries, and hidden linearity: ``Goldfishes" galore
\jour TMF
\yr 2007
\vol 151
\issue 3
\pages 495--509
\mathnet{http://mi.mathnet.ru/tmf6062}
\crossref{https://doi.org/10.4213/tmf6062}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2406037}
\zmath{https://zbmath.org/?q=an:1137.70010}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...151..851N}
\elib{https://elibrary.ru/item.asp?id=9521603}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 151
\issue 3
\pages 851--862
\crossref{https://doi.org/10.1007/s11232-007-0070-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000247980300014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34347205683}
Linking options:
  • https://www.mathnet.ru/eng/tmf6062
  • https://doi.org/10.4213/tmf6062
  • https://www.mathnet.ru/eng/tmf/v151/i3/p495
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:626
    Full-text PDF :294
    References:68
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024