Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2007, Volume 151, Number 3, Pages 486–494
DOI: https://doi.org/10.4213/tmf6061
(Mi tmf6061)
 

This article is cited in 13 scientific papers (total in 13 papers)

Differential equations uniquely determined by algebras of point symmetries

G. Mannoa, F. Oliverib, R. Vitoloa

a Lecce University
b University of Messina
References:
Abstract: We continue to investigate strongly and weakly Lie remarkable equations, which we defined in a recent paper. We consider some relevant algebras of vector fields on $\mathbb{R}^k$ (such as the isometric, affine, projective, or conformal algebras) and characterize strongly Lie remarkable equations admitted by the considered Lie algebras.
Keywords: Lie symmetries of differential equations, jet space.
English version:
Theoretical and Mathematical Physics, 2007, Volume 151, Issue 3, Pages 843–850
DOI: https://doi.org/10.1007/s11232-007-0069-1
Bibliographic databases:
Language: Russian
Citation: G. Manno, F. Oliveri, R. Vitolo, “Differential equations uniquely determined by algebras of point symmetries”, TMF, 151:3 (2007), 486–494; Theoret. and Math. Phys., 151:3 (2007), 843–850
Citation in format AMSBIB
\Bibitem{ManOliVit07}
\by G.~Manno, F.~Oliveri, R.~Vitolo
\paper Differential equations uniquely determined by algebras of point symmetries
\jour TMF
\yr 2007
\vol 151
\issue 3
\pages 486--494
\mathnet{http://mi.mathnet.ru/tmf6061}
\crossref{https://doi.org/10.4213/tmf6061}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2406036}
\zmath{https://zbmath.org/?q=an:1153.35007}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...151..843M}
\elib{https://elibrary.ru/item.asp?id=9521602}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 151
\issue 3
\pages 843--850
\crossref{https://doi.org/10.1007/s11232-007-0069-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000247980300013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34347209901}
Linking options:
  • https://www.mathnet.ru/eng/tmf6061
  • https://doi.org/10.4213/tmf6061
  • https://www.mathnet.ru/eng/tmf/v151/i3/p486
  • This publication is cited in the following 13 articles:
    1. Oliveri F., “Relie: a Reduce Program For Lie Group Analysis of Differential Equations”, Symmetry-Basel, 13:10 (2021), 1826  crossref  isi  scopus
    2. Gorgone M., Oliveri F., “Consistent Approximate Q-Conditional Symmetries of Pdes: Application to a Hyperbolic Reaction-Diffusion-Convection Equation”, Z. Angew. Math. Phys., 72:3 (2021), 119  crossref  mathscinet  isi
    3. Gorgone M., Oliveri F., “Lie Remarkable Partial Differential Equations Characterized By Lie Algebras of Point Symmetries”, J. Geom. Phys., 144 (2019), 314–323  crossref  mathscinet  isi
    4. Gorgone M., Oliveri F., “Nonlinear first order PDEs reducible to autonomous form polynomially homogeneous in the derivatives”, J. Geom. Phys., 113 (2017), 53–64  crossref  mathscinet  zmath  isi  scopus
    5. Pucci E., Saccomandi G., Vitolo R., “Bogus Transformations in Mechanics of Continua”, Int. J. Eng. Sci., 99 (2016), 13–21  crossref  mathscinet  isi  scopus
    6. Sergyeyev A., Vitolo R., “Symmetries and conservation laws for the Karczewska–Rozmej–Rutkowski–Infeld equation”, Nonlinear Anal.-Real World Appl., 32 (2016), 1–9  crossref  mathscinet  zmath  isi  elib  scopus
    7. De Matteis G., Manno G., “Lie Algebra Symmetry Analysis of the Helfrich and Willmore Surface Shape Equations”, Commun. Pure Appl. Anal, 13:1 (2014), 453–481  crossref  mathscinet  zmath  isi  scopus
    8. Manno G., Oliveri F., Saccomandi G., Vitolo R., “Ordinary Differential Equations Described By Their Lie Symmetry Algebra”, J. Geom. Phys., 85 (2014), 2–15  crossref  mathscinet  zmath  adsnasa  isi  scopus
    9. White H., “Nonlocal symmetries and complete symmetry groups of dynamical systems admitting linearizations”, Nuovo Cimento Della Societa Italiana Di Fisica B-Basic Topics in Physics, 125:11 (2010), 1363–1378  mathscinet  isi
    10. Francesco Oliveri, “Lie Symmetries of Differential Equations: Classical Results and Recent Contributions”, Symmetry, 2:2 (2010), 658  crossref
    11. Andriopoulos K., Dimas S., Leach P.G.L., Tsoubelis D., “On the systematic approach to the classification of differential equations by group theoretical methods”, J. Comput. Appl. Math., 230:1 (2009), 224–232  crossref  mathscinet  zmath  adsnasa  isi  scopus
    12. Myeni S.M., Leach P.G.L., “Complete symmetry group and nonlocal symmetries for some two-dimensional evolution equations”, J. Math. Anal. Appl., 357:1 (2009), 225–231  crossref  mathscinet  zmath  isi  scopus
    13. Dimas S., Andriopoulos K., Tsoubelis D., Leach P.G.L., “Complete specification of some partial differential equations that arise in financial mathematics”, Journal of Nonlinear Mathematical Physics, 16, Suppl. 1 (2009), 73–92  crossref  zmath  adsnasa  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:448
    Full-text PDF :206
    References:66
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025