Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2007, Volume 151, Number 3, Pages 510–517
DOI: https://doi.org/10.4213/tmf6063
(Mi tmf6063)
 

Decomposition of variables and duality in non-Abelian models

A. P. Protogenova, V. A. Verbusb

a Institute of Applied Physics, Russian Academy of Sciences
b Institute for Physics of Microstructures, Russian Academy of Sciences
References:
Abstract: We consider inhomogeneous current states in low-dimensional systems characterized by spatial separation of phase states with ordered spin and charge degrees of freedom. We show that near the self-duality point in the Ginzburg–Landau spinor model, the inhomogeneity degree of non-Abelian states is higher than that of states with an Abelian distribution of degrees of freedom.
Keywords: strongly correlated system, low-dimensional electron system, inhomogeneous current state, Ginzburg–Landau model, Hopf invariant.
English version:
Theoretical and Mathematical Physics, 2007, Volume 151, Issue 3, Pages 863–868
DOI: https://doi.org/10.1007/s11232-007-0071-7
Bibliographic databases:
Language: Russian
Citation: A. P. Protogenov, V. A. Verbus, “Decomposition of variables and duality in non-Abelian models”, TMF, 151:3 (2007), 510–517; Theoret. and Math. Phys., 151:3 (2007), 863–868
Citation in format AMSBIB
\Bibitem{ProVer07}
\by A.~P.~Protogenov, V.~A.~Verbus
\paper Decomposition of variables and duality in non-Abelian models
\jour TMF
\yr 2007
\vol 151
\issue 3
\pages 510--517
\mathnet{http://mi.mathnet.ru/tmf6063}
\crossref{https://doi.org/10.4213/tmf6063}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2406038}
\zmath{https://zbmath.org/?q=an:1138.81576}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...151..863P}
\elib{https://elibrary.ru/item.asp?id=9521604}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 151
\issue 3
\pages 863--868
\crossref{https://doi.org/10.1007/s11232-007-0071-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000247980300015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34347205643}
Linking options:
  • https://www.mathnet.ru/eng/tmf6063
  • https://doi.org/10.4213/tmf6063
  • https://www.mathnet.ru/eng/tmf/v151/i3/p510
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:359
    Full-text PDF :201
    References:52
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024