Abstract:
An approximate Dyson equation is formulated for the correlation Green's function and the free-energy diagrams corresponding to this approximation are summed. The basic equations that determine the Mott metal-insulator transition are established. The critical value of the Coulomb interaction is Uc=W/2, where W is the width of the band.
Citation:
S. I. Vakaru, M. I. Vladimir, V. A. Moskalenko, “Diagram technique for the Hubbard model.
II. Metal-insulator transition”, TMF, 85:2 (1990), 248–257; Theoret. and Math. Phys., 85:2 (1990), 1185–1192
This publication is cited in the following 53 articles:
I. D. Chebotar', “Systems of Strongly Correlated Electrons Interacting with Each Other and with Phonons: Diagrammatic Approach”, Surf. Engin. Appl.Electrochem., 60:1 (2024), 94
Nguen Dan Tung, Artem A. Vladimirov, Nikolay M. Plakida, “Electronic spectrum and superconductivity in the extended t–J–V model”, Physica C: Superconductivity and its Applications, 587 (2021), 1353900
Alexei Sherman, “Continuum of many-particle states near the metal-insulator transition in the Hubbard model”, Eur. Phys. J. B, 90:6 (2017)
Moskalenko V.A., Dohotaru L.A., Digor D.F., Cebotari I.D., “Investigation of the Generalized Anderson Impurity Model”, 3rd International Conference on Nanotechnologies and Biomedical Engineering, Ifmbe Proceedings, 55, eds. Sontea V., Tiginyanu I., Springer, 2016, 209–212
Alexei Sherman, “Pseudogaps in the three-band Hubbard model”, Eur. Phys. J. B, 89:4 (2016)
Tong N.-H., “Equation-of-Motion Series Expansion of Double-Time Green'S Functions”, Phys. Rev. B, 92:16 (2015), 165126
A. Sherman, “The Mott transition in the strong coupling perturbation theory”, Physica B: Condensed Matter, 456 (2015), 35
A. Sherman, “Low-frequency quantum oscillations due to strong electron correlations”, Physics Letters A, 379:34-35 (2015), 1912
V. A. Moskalenko, L. A. Dohotaru, D. F. Digor, “The theory of nonequilibrium Anderson impurity model for strongly correlated electron systems”, Low Temperature Physics, 41:5 (2015), 401
Alexei Sherman, “The Hubbard model in the strong coupling theory at arbitrary filling”, Physica Status Solidi (b), 252:9 (2015), 2006
Gang Li, “Hidden physics in the dual-fermion approach: A special case of a nonlocal expansion scheme”, Phys. Rev. B, 91:16 (2015)
V. A. Moskalenko, L. A. Dohotaru, D. F. Digor, I. D. Chebotar', “Diagram theory for the twofold-degenerate Anderson impurity model”, Theoret. and Math. Phys., 178:1 (2014), 115–129
V. A. Moskalenko, L. A. Dohotaru, D. F. Digor, I. D. Chebotar', “Dynamics of phonon clouds of correlated polarons”, Theoret. and Math. Phys., 179:2 (2014), 588–595
Moskalenko V.A. Dohotaru L.A. Digor D.F. Cebotari I.D., “Strong Coupling Diagrammatic Approach To the Anderson-Holstein Hamiltonian”, Proc. Rom. Acad. Ser. A-Math. Phys., 15:2 (2014), 139–145
Moskalenko V.A. Dohotaru L.A. Digor D.F. Cebotari I.D., “Stationary Property of the Thermodynamic Potential of the Hubbard Model in Strong Coupling Diagrammatic Approach for Superconducting State”, Low Temp. Phys., 38:10 (2012), 922–929
V. A. Moskalenko, L. A. Dohotaru, I. D. Chebotar', D. F. Digor, “The diagram theory for the degenerate two-orbital Hubbard model”, Theoret. and Math. Phys., 168:3 (2011), 1278–1289
Kharrasov M.Kh., Kyzyrgulov I.R., Khusainov A.T., “Electron-Phonon Interaction in a Spatially Disordered System with a Strong Interelectron Correlation”, Physics of Metals and Metallography, 111:2 (2011), 123–132
Kharrasov M.Kh., Kyzyrgulov I.R., Khusainov A.T., “Elektron-fononnoe vzaimodeistvie v prostranstvenno neuporyadochennoi sisteme s silnoi mezhelektronnoi korrelyatsiei”, Fizika metallov i metallovedenie, 111:2 (2011), 126–135
V. A. Moskalenko, L. A. Dohotaru, R. Citro, “Diagram theory for the periodic Anderson model: Stationarity of the thermodynamic potential”, Theoret. and Math. Phys., 162:3 (2010), 366–382
Moskalenko V.A., Dohotaru L.A., “Diagrammatic analysis of the Hubbard model: Stationary property of the thermodynamic potential”, Physics of Particles and Nuclei, 41:7 (2010), 1039–1043