Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1990, Volume 85, Number 2, Pages 248–257 (Mi tmf5948)  

This article is cited in 53 scientific papers (total in 53 papers)

Diagram technique for the Hubbard model. II. Metal-insulator transition

S. I. Vakaru, M. I. Vladimir, V. A. Moskalenko
References:
Abstract: An approximate Dyson equation is formulated for the correlation Green's function and the free-energy diagrams corresponding to this approximation are summed. The basic equations that determine the Mott metal-insulator transition are established. The critical value of the Coulomb interaction is Uc=W/2, where W is the width of the band.
Received: 18.06.1990
English version:
Theoretical and Mathematical Physics, 1990, Volume 85, Issue 2, Pages 1185–1192
DOI: https://doi.org/10.1007/BF01086848
Bibliographic databases:
Language: Russian
Citation: S. I. Vakaru, M. I. Vladimir, V. A. Moskalenko, “Diagram technique for the Hubbard model. II. Metal-insulator transition”, TMF, 85:2 (1990), 248–257; Theoret. and Math. Phys., 85:2 (1990), 1185–1192
Citation in format AMSBIB
\Bibitem{VakVlaMos90}
\by S.~I.~Vakaru, M.~I.~Vladimir, V.~A.~Moskalenko
\paper Diagram technique for the Hubbard model.
II.~Metal-insulator transition
\jour TMF
\yr 1990
\vol 85
\issue 2
\pages 248--257
\mathnet{http://mi.mathnet.ru/tmf5948}
\transl
\jour Theoret. and Math. Phys.
\yr 1990
\vol 85
\issue 2
\pages 1185--1192
\crossref{https://doi.org/10.1007/BF01086848}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1990FU79200009}
Linking options:
  • https://www.mathnet.ru/eng/tmf5948
  • https://www.mathnet.ru/eng/tmf/v85/i2/p248
    Cycle of papers
    This publication is cited in the following 53 articles:
    1. I. D. Chebotar', “Systems of Strongly Correlated Electrons Interacting with Each Other and with Phonons: Diagrammatic Approach”, Surf. Engin. Appl.Electrochem., 60:1 (2024), 94  crossref
    2. Nguen Dan Tung, Artem A. Vladimirov, Nikolay M. Plakida, “Electronic spectrum and superconductivity in the extended t–J–V model”, Physica C: Superconductivity and its Applications, 587 (2021), 1353900  crossref
    3. Alexei Sherman, “Continuum of many-particle states near the metal-insulator transition in the Hubbard model”, Eur. Phys. J. B, 90:6 (2017)  crossref
    4. Moskalenko V.A., Dohotaru L.A., Digor D.F., Cebotari I.D., “Investigation of the Generalized Anderson Impurity Model”, 3rd International Conference on Nanotechnologies and Biomedical Engineering, Ifmbe Proceedings, 55, eds. Sontea V., Tiginyanu I., Springer, 2016, 209–212  crossref  isi
    5. Alexei Sherman, “Pseudogaps in the three-band Hubbard model”, Eur. Phys. J. B, 89:4 (2016)  crossref
    6. Tong N.-H., “Equation-of-Motion Series Expansion of Double-Time Green'S Functions”, Phys. Rev. B, 92:16 (2015), 165126  crossref  isi
    7. A. Sherman, “The Mott transition in the strong coupling perturbation theory”, Physica B: Condensed Matter, 456 (2015), 35  crossref
    8. A. Sherman, “Low-frequency quantum oscillations due to strong electron correlations”, Physics Letters A, 379:34-35 (2015), 1912  crossref
    9. V. A. Moskalenko, L. A. Dohotaru, D. F. Digor, “The theory of nonequilibrium Anderson impurity model for strongly correlated electron systems”, Low Temperature Physics, 41:5 (2015), 401  crossref
    10. Alexei Sherman, “The Hubbard model in the strong coupling theory at arbitrary filling”, Physica Status Solidi (b), 252:9 (2015), 2006  crossref
    11. Gang Li, “Hidden physics in the dual-fermion approach: A special case of a nonlocal expansion scheme”, Phys. Rev. B, 91:16 (2015)  crossref
    12. V. A. Moskalenko, L. A. Dohotaru, D. F. Digor, I. D. Chebotar', “Diagram theory for the twofold-degenerate Anderson impurity model”, Theoret. and Math. Phys., 178:1 (2014), 115–129  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    13. V. A. Moskalenko, L. A. Dohotaru, D. F. Digor, I. D. Chebotar', “Dynamics of phonon clouds of correlated polarons”, Theoret. and Math. Phys., 179:2 (2014), 588–595  mathnet  crossref  crossref  adsnasa  isi  elib
    14. Moskalenko V.A. Dohotaru L.A. Digor D.F. Cebotari I.D., “Strong Coupling Diagrammatic Approach To the Anderson-Holstein Hamiltonian”, Proc. Rom. Acad. Ser. A-Math. Phys., 15:2 (2014), 139–145  isi
    15. Moskalenko V.A. Dohotaru L.A. Digor D.F. Cebotari I.D., “Stationary Property of the Thermodynamic Potential of the Hubbard Model in Strong Coupling Diagrammatic Approach for Superconducting State”, Low Temp. Phys., 38:10 (2012), 922–929  crossref  isi
    16. V. A. Moskalenko, L. A. Dohotaru, I. D. Chebotar', D. F. Digor, “The diagram theory for the degenerate two-orbital Hubbard model”, Theoret. and Math. Phys., 168:3 (2011), 1278–1289  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    17. Kharrasov M.Kh., Kyzyrgulov I.R., Khusainov A.T., “Electron-Phonon Interaction in a Spatially Disordered System with a Strong Interelectron Correlation”, Physics of Metals and Metallography, 111:2 (2011), 123–132  crossref  isi
    18. Kharrasov M.Kh., Kyzyrgulov I.R., Khusainov A.T., “Elektron-fononnoe vzaimodeistvie v prostranstvenno neuporyadochennoi sisteme s silnoi mezhelektronnoi korrelyatsiei”, Fizika metallov i metallovedenie, 111:2 (2011), 126–135  elib
    19. V. A. Moskalenko, L. A. Dohotaru, R. Citro, “Diagram theory for the periodic Anderson model: Stationarity of the thermodynamic potential”, Theoret. and Math. Phys., 162:3 (2010), 366–382  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    20. Moskalenko V.A., Dohotaru L.A., “Diagrammatic analysis of the Hubbard model: Stationary property of the thermodynamic potential”, Physics of Particles and Nuclei, 41:7 (2010), 1039–1043  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:609
    Full-text PDF :185
    References:75
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025