Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1991, Volume 87, Number 1, Pages 48–56 (Mi tmf5468)  

This article is cited in 22 scientific papers (total in 22 papers)

Minimal tori in the five-dimensional sphere in $\mathbb C^3$

R. A. Sharipov
References:
Abstract: The class of surfaces that have a certain property (called complexnormal) in the five-dimensional sphere in $\mathbb C^3$ is considered. It is shown that the minimal tori in this class are described by the equation $u_{z\overline{z}}=e^{-2u}-e^u$, which can be integrated by the inverse scattering method. The construction of finite-gap minimal tori that are complexnormal in the five-dimensional sphere in $\mathbb C^3$ is described.
Received: 24.09.1990
English version:
Theoretical and Mathematical Physics, 1991, Volume 87, Issue 1, Pages 363–369
DOI: https://doi.org/10.1007/BF01016575
Bibliographic databases:
Language: Russian
Citation: R. A. Sharipov, “Minimal tori in the five-dimensional sphere in $\mathbb C^3$”, TMF, 87:1 (1991), 48–56; Theoret. and Math. Phys., 87:1 (1991), 363–369
Citation in format AMSBIB
\Bibitem{Sha91}
\by R.~A.~Sharipov
\paper Minimal tori in the five-dimensional sphere in $\mathbb C^3$
\jour TMF
\yr 1991
\vol 87
\issue 1
\pages 48--56
\mathnet{http://mi.mathnet.ru/tmf5468}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1122779}
\zmath{https://zbmath.org/?q=an:0742.53021}
\transl
\jour Theoret. and Math. Phys.
\yr 1991
\vol 87
\issue 1
\pages 363--369
\crossref{https://doi.org/10.1007/BF01016575}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991HG83500005}
Linking options:
  • https://www.mathnet.ru/eng/tmf5468
  • https://www.mathnet.ru/eng/tmf/v87/i1/p48
  • This publication is cited in the following 22 articles:
    1. Polina A. Leonchik, Andrey E. Mironov, “Two-dimensional discrete operators and rational functions on algebraic curves”, São Paulo J. Math. Sci., 2024  crossref
    2. Josef F. Dorfmeister, Hui Ma, “Minimal Lagrangian surfaces in CP2 via the loop group method part II: The general case”, Journal of Geometry and Physics, 2024, 105398  crossref
    3. Katsuhiro Moriya, “Polar varieties and bipolar surfaces of minimal surfaces in the n-sphere”, Ann Glob Anal Geom, 61:1 (2022), 21  crossref
    4. Josef F. Dorfmeister, Hui Ma, “Minimal Lagrangian surfaces in ℂP2 via the loop group method Part I: The contractible case”, Journal of Geometry and Physics, 161 (2021), 104016  crossref
    5. M. A. Ovcharenko, “On Hamiltonian Minimality of Isotropic Nonhomogeneous Tori in $\mathbb{H}^n$ and $\mathbb C\mathrm P^{2n+1}$”, Math. Notes, 108:1 (2020), 108–116  mathnet  crossref  crossref  mathscinet  isi  elib
    6. M. S. Ermentai, “Ob odnom semeistve minimalnykh izotropnykh torov i butylok Kleina v $\mathbb{C}P^3$”, Sib. elektron. matem. izv., 16 (2019), 955–958  mathnet  crossref
    7. M. S. Yermentay, “On minimal isotropic tori in $\mathbb CP^3$”, Siberian Math. J., 59:3 (2018), 415–419  mathnet  crossref  crossref  isi  elib
    8. M. A. Ovcharenko, “On Hamiltonian-minimal isotropic homogeneous tori in $\mathbb C^n$ and $\mathbb C\mathrm P^n$”, Siberian Math. J., 59:5 (2018), 931–937  mathnet  crossref  crossref  isi  elib
    9. Hui Ma, Andrey E. Mironov, Dafeng Zuo, “An energy functional for Lagrangian tori in $\mathbb {C}P^2$ C P 2”, Ann Glob Anal Geom, 53:4 (2018), 583  crossref
    10. Josef F. Dorfmeister, Hui Ma, Springer Proceedings in Mathematics & Statistics, 154, Geometry and Topology of Manifolds, 2016, 97  crossref
    11. I. P. Rybnikov, “Minimal Lagrangian submanifolds in $\mathbb C\mathrm P^n$ with diagonal metric”, Siberian Math. J., 52:1 (2011), 105–112  mathnet  crossref  mathscinet  isi
    12. Richard Hunter, Ian McIntosh, “The classification of Hamiltonian stationary Lagrangian tori in ${{\mathbb {CP}}^2}$ by their spectral data”, manuscripta math., 135:3-4 (2011), 437  crossref
    13. A. E. Mironov, “Spectral Data for Hamiltonian-Minimal Lagrangian Tori in $\mathbb C\mathrm P^2$”, Proc. Steklov Inst. Math., 263 (2008), 112–126  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    14. A. E. Mironov, “On a Family of Conformally Flat Minimal Lagrangian Tori in $\mathbb CP^3$”, Math. Notes, 81:3 (2007), 329–337  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    15. A. E. Mironov, “Relationship Between Symmetries of the Tzizeica Equation and the Novikov–Veselov Hierarchy”, Math. Notes, 82:4 (2007), 569–572  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    16. Hui Ma, Markus Schmies, “Examples of Hamiltonian Stationary Lagrangian Tori in $\mathbb{C}P^2$”, Geom Dedicata, 118:1 (2006), 173  crossref
    17. E. Musso, L. Nicolodi, “On the Cauchy problem for the integrable system of Lie minimal surfaces”, Journal of Mathematical Physics, 46:11 (2005)  crossref
    18. Hui Ma, “Hamiltonian Stationary Lagrangian Surfaces in ℂP2”, Ann Glob Anal Geom, 27:1 (2005), 1  crossref
    19. Hui Ma, Yujie Ma, “Totally real minimal tori in”, Math. Z., 249:2 (2005), 241  crossref
    20. A. E. Mironov, “Ierarkhiya uravnenii Veselova–Novikova i integriruemye deformatsii minimalnykh lagranzhevykh torov v $\mathbb CP^2$”, Sib. elektron. matem. izv., 1 (2004), 38–46  mathnet  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:396
    Full-text PDF :177
    References:55
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025