Abstract:
The class of surfaces that have a certain property (called complexnormal) in the five-dimensional sphere in $\mathbb C^3$ is considered. It is shown that the minimal tori in this class are described by the equation $u_{z\overline{z}}=e^{-2u}-e^u$, which can be integrated by the inverse scattering method. The construction of finite-gap minimal tori that are complexnormal in the five-dimensional sphere in $\mathbb C^3$ is described.
Citation:
R. A. Sharipov, “Minimal tori in the five-dimensional sphere in $\mathbb C^3$”, TMF, 87:1 (1991), 48–56; Theoret. and Math. Phys., 87:1 (1991), 363–369
\Bibitem{Sha91}
\by R.~A.~Sharipov
\paper Minimal tori in the five-dimensional sphere in $\mathbb C^3$
\jour TMF
\yr 1991
\vol 87
\issue 1
\pages 48--56
\mathnet{http://mi.mathnet.ru/tmf5468}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1122779}
\zmath{https://zbmath.org/?q=an:0742.53021}
\transl
\jour Theoret. and Math. Phys.
\yr 1991
\vol 87
\issue 1
\pages 363--369
\crossref{https://doi.org/10.1007/BF01016575}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991HG83500005}
Linking options:
https://www.mathnet.ru/eng/tmf5468
https://www.mathnet.ru/eng/tmf/v87/i1/p48
This publication is cited in the following 22 articles:
Polina A. Leonchik, Andrey E. Mironov, “Two-dimensional discrete operators and rational functions on algebraic curves”, São Paulo J. Math. Sci., 2024
Josef F. Dorfmeister, Hui Ma, “Minimal Lagrangian surfaces in CP2 via the loop group method part II: The general case”, Journal of Geometry and Physics, 2024, 105398
Katsuhiro Moriya, “Polar varieties and bipolar surfaces of minimal surfaces in the n-sphere”, Ann Glob Anal Geom, 61:1 (2022), 21
Josef F. Dorfmeister, Hui Ma, “Minimal Lagrangian surfaces in ℂP2 via the loop group method Part I: The contractible case”, Journal of Geometry and Physics, 161 (2021), 104016
M. A. Ovcharenko, “On Hamiltonian Minimality of Isotropic Nonhomogeneous Tori in $\mathbb{H}^n$ and $\mathbb C\mathrm P^{2n+1}$”, Math. Notes, 108:1 (2020), 108–116
M. S. Ermentai, “Ob odnom semeistve minimalnykh izotropnykh torov i butylok Kleina v $\mathbb{C}P^3$”, Sib. elektron. matem. izv., 16 (2019), 955–958
M. S. Yermentay, “On minimal isotropic tori in $\mathbb CP^3$”, Siberian Math. J., 59:3 (2018), 415–419
M. A. Ovcharenko, “On Hamiltonian-minimal isotropic homogeneous tori in $\mathbb C^n$ and $\mathbb C\mathrm P^n$”, Siberian Math. J., 59:5 (2018), 931–937
Hui Ma, Andrey E. Mironov, Dafeng Zuo, “An energy functional for Lagrangian tori in $\mathbb {C}P^2$ C P 2”, Ann Glob Anal Geom, 53:4 (2018), 583
Josef F. Dorfmeister, Hui Ma, Springer Proceedings in Mathematics & Statistics, 154, Geometry and Topology of Manifolds, 2016, 97
I. P. Rybnikov, “Minimal Lagrangian submanifolds in $\mathbb C\mathrm P^n$ with diagonal metric”, Siberian Math. J., 52:1 (2011), 105–112
Richard Hunter, Ian McIntosh, “The classification of Hamiltonian stationary Lagrangian tori in ${{\mathbb {CP}}^2}$ by their spectral data”, manuscripta math., 135:3-4 (2011), 437
A. E. Mironov, “Spectral Data for Hamiltonian-Minimal Lagrangian Tori in $\mathbb C\mathrm P^2$”, Proc. Steklov Inst. Math., 263 (2008), 112–126
A. E. Mironov, “On a Family of Conformally Flat Minimal Lagrangian Tori in $\mathbb CP^3$”, Math. Notes, 81:3 (2007), 329–337
A. E. Mironov, “Relationship Between Symmetries of the Tzizeica Equation and the Novikov–Veselov Hierarchy”, Math. Notes, 82:4 (2007), 569–572
Hui Ma, Markus Schmies, “Examples of Hamiltonian Stationary Lagrangian Tori in $\mathbb{C}P^2$”, Geom Dedicata, 118:1 (2006), 173
E. Musso, L. Nicolodi, “On the Cauchy problem for the integrable system of Lie minimal surfaces”, Journal of Mathematical Physics, 46:11 (2005)
Hui Ma, “Hamiltonian Stationary Lagrangian Surfaces in ℂP2”, Ann Glob Anal Geom, 27:1 (2005), 1
Hui Ma, Yujie Ma, “Totally real minimal tori in”, Math. Z., 249:2 (2005), 241
A. E. Mironov, “Ierarkhiya uravnenii Veselova–Novikova i integriruemye deformatsii minimalnykh lagranzhevykh torov v $\mathbb CP^2$”, Sib. elektron. matem. izv., 1 (2004), 38–46