Abstract:
Explicit expressions that demonstrate the inheritance of some symmetries of the KdV equations by the Whitham equations for cnoidal KdV waves are obtained. A class of symmetries of Whitham equations of special form is found and described. Explicit expressions that describe a series of self-similar solutions of Whitham equations are obtained.
Citation:
V. R. Kudashev, S. E. Sharapov, “Inheritance of KdV symmetries under Whitham averaging and hydrodynamic symmetries of the Witham equations”, TMF, 87:1 (1991), 40–47; Theoret. and Math. Phys., 87:1 (1991), 358–363
\Bibitem{KudSha91}
\by V.~R.~Kudashev, S.~E.~Sharapov
\paper Inheritance of~KdV symmetries under Whitham averaging and hydrodynamic symmetries of the Witham equations
\jour TMF
\yr 1991
\vol 87
\issue 1
\pages 40--47
\mathnet{http://mi.mathnet.ru/tmf5467}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1122778}
\zmath{https://zbmath.org/?q=an:0736.76008|0727.76033}
\transl
\jour Theoret. and Math. Phys.
\yr 1991
\vol 87
\issue 1
\pages 358--363
\crossref{https://doi.org/10.1007/BF01016574}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991HG83500004}
Linking options:
https://www.mathnet.ru/eng/tmf5467
https://www.mathnet.ru/eng/tmf/v87/i1/p40
This publication is cited in the following 26 articles:
A. M. Kamchatnov, “Gurevich–Pitaevskii problem and its development”, Phys. Usp., 64:1 (2021), 48–82
B. I. Suleimanov, A. M. Shavlukov, “Integrable Abel equation and asymptotics
of symmetry solutions of Korteweg-de Vries equation”, Ufa Math. J., 13:2 (2021), 99–106
G.A. El, M.A. Hoefer, “Dispersive shock waves and modulation theory”, Physica D: Nonlinear Phenomena, 333 (2016), 11
Y Kodama, B Konopelchenko, W K Schief, “Critical points, Lauricella functions and Whitham-type equations”, J. Phys. A: Math. Theor., 48:22 (2015), 225202
B. G. Konopelchenko, W. K. Schief, “Integrable discretization of hodograph-type systems, hyperelliptic integrals and Whitham equations”, Proc. R. Soc. A., 470:2172 (2014), 20140514
G.A. El, V.V. Khodorovskii, A.M. Leszczyszyn, “Refraction of dispersive shock waves”, Physica D: Nonlinear Phenomena, 241:18 (2012), 1567
B. G. Konopelchenko, L. Martínez Alonso, E. Medina, “Singular sectors of the one-layer Benney and dispersionless Toda systems and their interrelations”, Theoret. and Math. Phys., 168:1 (2011), 963–973
B. Konopelchenko, L. Martínez Alonso, E. Medina, “On the singular sector of the Hermitian random matrix model in the large N limit”, Physics Letters A, 375:5 (2011), 867
B Konopelchenko, L Martínez Alonso, E Medina, “Hodograph solutions of the dispersionless coupled KdV hierarchies, critical points and the Euler–Poisson–Darboux equation”, J. Phys. A: Math. Theor., 43:43 (2010), 434020
R. N. Garifullin, B. I. Suleimanov, “From weak discontinuities to nondissipative shock waves”, J. Exp. Theor. Phys., 110:1 (2010), 133
Lorenzoni, P, “Flat bidifferential ideals and semi-Hamiltonian PDEs”, Journal of Physics A-Mathematical and General, 39:44 (2006), 13701
G. A. El, R. H. J. Grimshaw, A. M. Kamchatnov, “Wave Breaking and the Generation of Undular Bores in an Integrable Shallow Water System”, Stud Appl Math, 114:4 (2005), 395
Grava, T, “Riemann–Hilbert problem for the small dispersion limit of the KdV equation and linear overdetermined systems of Euler-Poisson-Darboux type”, Communications on Pure and Applied Mathematics, 55:4 (2002), 395
G. A. El, R. H. J. Grimshaw, “Generation of undular bores in the shelves of slowly-varying solitary waves”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 12:4 (2002), 1015
Grava T., “From the Solution of the Tsarev System to the Solution of the Whitham Equations”, Math. Phys. Anal. Geom., 4:1 (2001), 65–96
T. Grava, “Bound to the number of oscillatory phases in the solution of the Whitham-KdV equations”, Physics Letters A, 254:5 (1999), 263
N. G. Mazur, “Quasiclassical asymptotics of the inverse scattering solutions of the KdV equation
and the solution of Whitham's modulation equations”, Theoret. and Math. Phys., 106:1 (1996), 35–49
El, GA, “Generating function of the Whitham-KdV hierarchy and effective solution of the Cauchy problem”, Physics Letters A, 222:6 (1996), 393