Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1985, Volume 64, Number 1, Pages 130–149 (Mi tmf4907)  

This article is cited in 8 scientific papers (total in 8 papers)

Thermodynamic limit of nonequilibrium states of a three-dimensional system of elastic spheres

V. I. Gerasimenko, D. Ya. Petrina
References:
Abstract: By the procedure of the thermodynamic limit solutions are constructed to the Cauchy problem for the Bogolyubov equations of a system of infinitely many particles interacting as absolutely elastic spheres.
Received: 09.07.1984
English version:
Theoretical and Mathematical Physics, 1985, Volume 64, Issue 1, Pages 734–747
DOI: https://doi.org/10.1007/BF01017041
Bibliographic databases:
Language: Russian
Citation: V. I. Gerasimenko, D. Ya. Petrina, “Thermodynamic limit of nonequilibrium states of a three-dimensional system of elastic spheres”, TMF, 64:1 (1985), 130–149; Theoret. and Math. Phys., 64:1 (1985), 734–747
Citation in format AMSBIB
\Bibitem{GerPet85}
\by V.~I.~Gerasimenko, D.~Ya.~Petrina
\paper Thermodynamic limit of nonequilibrium states of a~three-dimensional system of elastic spheres
\jour TMF
\yr 1985
\vol 64
\issue 1
\pages 130--149
\mathnet{http://mi.mathnet.ru/tmf4907}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=815102}
\transl
\jour Theoret. and Math. Phys.
\yr 1985
\vol 64
\issue 1
\pages 734--747
\crossref{https://doi.org/10.1007/BF01017041}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985AYT5900012}
Linking options:
  • https://www.mathnet.ru/eng/tmf4907
  • https://www.mathnet.ru/eng/tmf/v64/i1/p130
  • This publication is cited in the following 8 articles:
    1. V. Gerasimenko, I. Gapyak, “Non-perturbative solutions of hierarchies of evolution equations for colliding particles”, AIP Advances, 14:12 (2024)  crossref
    2. Gerasimenko I V. Gapyak V I., “Boltzmann-Grad Asymptotic Behavior of Collisional Dynamics”, Rev. Math. Phys., 33:2 (2021), 2130001  crossref  isi
    3. Gerasimenko V. Gapyak I., “Low-Density Asymptotic Behavior of Observables of Hard Sphere Fluids”, Adv. Math. Phys., 2018, 6252919  crossref  isi
    4. Sergio Simonella, “Evolution of Correlation Functions in the Hard Sphere Dynamics”, J Stat Phys, 155:6 (2014), 1191  crossref
    5. Viktor I. Gerasimenko, Igor V. Gapyak, “Hard sphere dynamics and the Enskog equation”, Kinetic & Related Models, 5:3 (2012), 459  crossref
    6. T. V. Ryabukha, “Functionals for the means of observables for one-dimensional infinite-particle systems”, Theoret. and Math. Phys., 162:3 (2010), 352–365  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    7. D. Ya. Petrina, V. I. Gerasimenko, “Mathematical problems of statistical mechanics of a system of elastic balls”, Russian Math. Surveys, 45:3 (1990), 153–211  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    8. V. I. Gerasimenko, D. Ya. Petrina, “Existence of the Boltzmann–Grad limit for an infinite system of hard spheres”, Theoret. and Math. Phys., 83:1 (1990), 402–418  mathnet  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:450
    Full-text PDF :138
    References:69
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025