Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1985, Volume 64, Number 1, Pages 150–162 (Mi tmf4908)  

This article is cited in 42 scientific papers (total in 42 papers)

Simple solution of two-dimensional ising model on a torus in terms of Grassmann integrals

V. N. Plechko
References:
Abstract: A simple method is proposed for exact solution of the two-dimensional Ising model on a torus (lattice of finite size with periodic boundary conditions). The problem is solved through construction of a Grassmann representation for the partition function. The mirror Grassmann factorization for the Boltzmann weights and a special identity for Grassmaan functions are used. The method is mathematically completely rigorous.
Received: 23.07.1984
English version:
Theoretical and Mathematical Physics, 1985, Volume 64, Issue 1, Pages 748–756
DOI: https://doi.org/10.1007/BF01017042
Bibliographic databases:
Language: Russian
Citation: V. N. Plechko, “Simple solution of two-dimensional ising model on a torus in terms of Grassmann integrals”, TMF, 64:1 (1985), 150–162; Theoret. and Math. Phys., 64:1 (1985), 748–756
Citation in format AMSBIB
\Bibitem{Ple85}
\by V.~N.~Plechko
\paper Simple solution of two-dimensional ising model on a~torus in terms of Grassmann integrals
\jour TMF
\yr 1985
\vol 64
\issue 1
\pages 150--162
\mathnet{http://mi.mathnet.ru/tmf4908}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=815103}
\transl
\jour Theoret. and Math. Phys.
\yr 1985
\vol 64
\issue 1
\pages 748--756
\crossref{https://doi.org/10.1007/BF01017042}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985AYT5900013}
Linking options:
  • https://www.mathnet.ru/eng/tmf4908
  • https://www.mathnet.ru/eng/tmf/v64/i1/p150
  • This publication is cited in the following 42 articles:
    1. M. Ostilli, “The ignored Berezin's solution of the Ising model”, EPJ H, 50:1 (2025)  crossref
    2. C. Wille, J. Eisert, A. Altland, “Topological dualities via tensor networks”, Phys. Rev. Research, 6:1 (2024)  crossref
    3. Wojciech Niedziółka, Jacek Wojtkiewicz, “On nonintegrability of three-dimensional Ising model”, Reports on Mathematical Physics, 93:3 (2024), 271  crossref
    4. Florian Kischel, Stefan Wessel, “Quantifying nonuniversal corner free-energy contributions in weakly anisotropic two-dimensional critical systems”, Phys. Rev. E, 110:2 (2024)  crossref
    5. M. Ostilli, G. W. C. Rocha, C. G. Bezerra, G. M. Viswanathan, “Generalization to d-dimensions of a fermionic path integral for exact enumeration of polygons on hypercubic lattices”, Sci Rep, 14:1 (2024)  crossref
    6. F.A. Kassan-Ogly, “Spontaneous magnetization of Kagome lattice in Ising model”, Journal of Magnetism and Magnetic Materials, 572 (2023), 170568  crossref
    7. G. M. Viswanathan, “Fermionic path integral for exact enumeration of polygons on the simple cubic lattice”, Phys. Rev. B, 108:1 (2023)  crossref
    8. C Wetterich, “Cellular automaton for spinor gravity in four dimensions”, J. Phys.: Conf. Ser., 2533:1 (2023), 012016  crossref
    9. C. Wetterich, “Fermionic quantum field theories as probabilistic cellular automata”, Phys. Rev. D, 105:7 (2022)  crossref
    10. Christof Wetterich, “Quantum fermions from classical bits”, Phil. Trans. R. Soc. A., 380:2216 (2022)  crossref
    11. Jean-Yves Fortin, “Singular self-energy for itinerant electrons in a dilute Ising spin bath”, J. Phys.: Condens. Matter, 33:8 (2021), 085602  crossref
    12. Jean-Yves Fortin, Pierrick Lample, “Itinerant fermions on dilute frustrated Ising lattices”, Eur. Phys. J. B, 94:10 (2021)  crossref
    13. Nahid Ghodratipour, Shahin Rouhani, “The Expectation Value of the Number of Loops and the Left-Passage Probability in the Double-Dimer Model”, Commun. Math. Phys., 373:1 (2020), 357  crossref
    14. Amir Nourhani, Vincent H. Crespi, Paul E. Lammert, “Communicating through a sea of frustration: Zero-temperature triangular Ising antiferromagnet on a cylinder”, Phys. Rev. E, 98:3 (2018)  crossref
    15. Nicolas Allegra, “Exact solution of the 2d dimer model: Corner free energy, correlation functions and combinatorics”, Nuclear Physics B, 894 (2015), 685  crossref
    16. Nicolas Allegra, Jean-Yves Fortin, “Grassmannian representation of the two-dimensional monomer-dimer model”, Phys. Rev. E, 89:6 (2014)  crossref
    17. Gibbs Measures and Phase Transitions, 2011, 495  crossref
    18. V. N. Plechko, “Fermions and disorder in ising and related models in two dimensions”, Phys. Part. Nuclei, 41:7 (2010), 1054  crossref
    19. S. AKBAR JAFARI, “GRAPHICAL SOLUTION OF THE ISING MODEL ON HONEYCOMB LATTICE”, Int. J. Mod. Phys. B, 23:03 (2009), 395  crossref
    20. Maxime Clusel, Jean-Yves Fortin, Vladimir N Plechko, “Alternative description of the 2D Blume–Capel model using Grassmann algebra”, J. Phys. A: Math. Theor., 41:40 (2008), 405004  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:1096
    Full-text PDF :632
    References:79
    First page:2
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025