Abstract:
It is shown that the partition functions of the free fermion model on a planar lattice
satisfies inversion relations, i.e. if the relativistic factorized S matrix corresponding
to the model is unitary, the partition function is equal to unity. Further, it is shown
that this property also holds for the special case of the free fermion model on a threedimensional cubic lattice. The connection between the results obtained and the unitarization of the S matrix in Zamolodchikov's three-dimensional model is discussed.
Citation:
V. V. Bazhanov, Yu. G. Stroganov, “Hidden symmetry of free fermion model. III. Inversion relations”, TMF, 63:3 (1985), 417–427; Theoret. and Math. Phys., 63:3 (1985), 604–611
This publication is cited in the following 20 articles:
Alessandro Torrielli, “On factorising twists in AdS3 and AdS2”, Journal of Geometry and Physics, 183 (2023), 104690
A. Melikyan, “On integrability of the one-dimensional Hubbard model”, Physics Letters B, 847 (2023), 138291
A. Melikyan, “On extension of the Yang-Baxter equation and the fermionic R-operator”, Nuclear Physics B, 986 (2023), 116062
A. Melikyan, G. Weber, “The Lax pair for the fermionic Bazhanov-Stroganov R-operator”, Physics Letters B, 812 (2021), 136005
Marius de Leeuw, Chiara Paletta, Anton Pribytok, Ana L. Retore, Alessandro Torrielli, “Free fermions, vertex Hamiltonians, and lower-dimensional AdS/CFT”, J. High Energ. Phys., 2021:2 (2021)
Paul Melotti, “The Free-Fermion Eight-Vertex Model: Couplings, Bipartite Dimers and Z-Invariance”, Commun. Math. Phys., 381:1 (2021), 33
A. Melikyan, “The tetrahedral Zamolodchikov algebra for the fermionic Bazhanov-Stroganov R-operator”, Physics Letters B, 801 (2020), 135175
A. Melikyan, G. Weber, “Exceptional solutions to the eight-vertex model and integrability of anisotropic extensions of massive fermionic models”, Nuclear Physics B, 938 (2019), 640
Torrielli A., “On AdS(2)/CFT1 Transfer Matrices, Bethe Ansatz and Scale Invariance”, J. Phys. A-Math. Theor., 51:1 (2018), 015402
Michael Assis, “The 16-vertex model and its even and odd 8-vertex subcases on the square lattice”, J. Phys. A: Math. Theor., 50:39 (2017), 395001
Spiridonov V.P., “Elliptic Beta Integrals and Solvable Models of Statistical Mechanics”, Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics, Contemporary Mathematics, 563, ed. AcostaHumanez P. Finkel F. Kamran N. Olver P., Amer Mathematical Soc, 2012, 181–211
Iorgov N., Lisovyy O., “Finite-lattice form factors in free-fermion models”, J Stat Mech Theory Exp, 2011, P04011
N Iorgov, O Lisovyy, “Finite-lattice form factors in free-fermion models”, J. Stat. Mech., 2011:04 (2011), P04011
O Lisovyy, “Transfer matrix eigenvectors of the Baxter–Bazhanov–Stroganov τ2-model forN= 2”, J. Phys. A: Math. Gen., 39:10 (2006), 2265
Yu. G. Stroganov, “Tetrahedron equation and spin integrable models on the cubic lattice”, Theoret. and Math. Phys., 110:2 (1997), 141–167
K. Scharnhorst, “The exact equivalence of the one-flavour lattice Thirring model with Wilson fermions to a two-colour loop model”, Nuclear Physics B, 503:1-2 (1997), 479
J.-M. Maillard, C.-M. Viallet, “A comment on free-fermion conditions for lattice models in two and more dimensions”, Physics Letters B, 381:1-3 (1996), 269
V V Bazhanov, N Yu Reshetikhin, “Remarks on the quantum dilogarithm”, J. Phys. A: Math. Gen., 28:8 (1995), 2217
Changrim Ahn, “Thermodynamics and form factors of supersymmetric integrable field theories”, Nuclear Physics B, 422:3 (1994), 449
Vladimir V. Bazhanov, Rodney J. Baxter, NATO ASI Series, 310, Integrable Quantum Field Theories, 1993, 15