Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1985, Volume 63, Number 3, Pages 417–427 (Mi tmf4845)  

This article is cited in 20 scientific papers (total in 20 papers)

Hidden symmetry of free fermion model. III. Inversion relations

V. V. Bazhanov, Yu. G. Stroganov
References:
Abstract: It is shown that the partition functions of the free fermion model on a planar lattice satisfies inversion relations, i.e. if the relativistic factorized S matrix corresponding to the model is unitary, the partition function is equal to unity. Further, it is shown that this property also holds for the special case of the free fermion model on a threedimensional cubic lattice. The connection between the results obtained and the unitarization of the S matrix in Zamolodchikov's three-dimensional model is discussed.
Received: 12.06.1984
English version:
Theoretical and Mathematical Physics, 1985, Volume 63, Issue 3, Pages 604–611
DOI: https://doi.org/10.1007/BF01017507
Bibliographic databases:
Language: Russian
Citation: V. V. Bazhanov, Yu. G. Stroganov, “Hidden symmetry of free fermion model. III. Inversion relations”, TMF, 63:3 (1985), 417–427; Theoret. and Math. Phys., 63:3 (1985), 604–611
Citation in format AMSBIB
\Bibitem{BazStr85}
\by V.~V.~Bazhanov, Yu.~G.~Stroganov
\paper Hidden symmetry of free fermion model. III.~Inversion relations
\jour TMF
\yr 1985
\vol 63
\issue 3
\pages 417--427
\mathnet{http://mi.mathnet.ru/tmf4845}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=805522}
\transl
\jour Theoret. and Math. Phys.
\yr 1985
\vol 63
\issue 3
\pages 604--611
\crossref{https://doi.org/10.1007/BF01017507}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985AWZ6400010}
Linking options:
  • https://www.mathnet.ru/eng/tmf4845
  • https://www.mathnet.ru/eng/tmf/v63/i3/p417
    Cycle of papers
    This publication is cited in the following 20 articles:
    1. Alessandro Torrielli, “On factorising twists in AdS3 and AdS2”, Journal of Geometry and Physics, 183 (2023), 104690  crossref
    2. A. Melikyan, “On integrability of the one-dimensional Hubbard model”, Physics Letters B, 847 (2023), 138291  crossref
    3. A. Melikyan, “On extension of the Yang-Baxter equation and the fermionic R-operator”, Nuclear Physics B, 986 (2023), 116062  crossref
    4. A. Melikyan, G. Weber, “The Lax pair for the fermionic Bazhanov-Stroganov R-operator”, Physics Letters B, 812 (2021), 136005  crossref
    5. Marius de Leeuw, Chiara Paletta, Anton Pribytok, Ana L. Retore, Alessandro Torrielli, “Free fermions, vertex Hamiltonians, and lower-dimensional AdS/CFT”, J. High Energ. Phys., 2021:2 (2021)  crossref
    6. Paul Melotti, “The Free-Fermion Eight-Vertex Model: Couplings, Bipartite Dimers and Z-Invariance”, Commun. Math. Phys., 381:1 (2021), 33  crossref
    7. A. Melikyan, “The tetrahedral Zamolodchikov algebra for the fermionic Bazhanov-Stroganov R-operator”, Physics Letters B, 801 (2020), 135175  crossref
    8. A. Melikyan, G. Weber, “Exceptional solutions to the eight-vertex model and integrability of anisotropic extensions of massive fermionic models”, Nuclear Physics B, 938 (2019), 640  crossref
    9. Torrielli A., “On AdS(2)/CFT1 Transfer Matrices, Bethe Ansatz and Scale Invariance”, J. Phys. A-Math. Theor., 51:1 (2018), 015402  crossref  isi
    10. Michael Assis, “The 16-vertex model and its even and odd 8-vertex subcases on the square lattice”, J. Phys. A: Math. Theor., 50:39 (2017), 395001  crossref
    11. Spiridonov V.P., “Elliptic Beta Integrals and Solvable Models of Statistical Mechanics”, Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics, Contemporary Mathematics, 563, ed. AcostaHumanez P. Finkel F. Kamran N. Olver P., Amer Mathematical Soc, 2012, 181–211  crossref  isi
    12. Iorgov N., Lisovyy O., “Finite-lattice form factors in free-fermion models”, J Stat Mech Theory Exp, 2011, P04011  isi
    13. N Iorgov, O Lisovyy, “Finite-lattice form factors in free-fermion models”, J. Stat. Mech., 2011:04 (2011), P04011  crossref
    14. O Lisovyy, “Transfer matrix eigenvectors of the Baxter–Bazhanov–Stroganov τ2-model forN= 2”, J. Phys. A: Math. Gen., 39:10 (2006), 2265  crossref
    15. Yu. G. Stroganov, “Tetrahedron equation and spin integrable models on the cubic lattice”, Theoret. and Math. Phys., 110:2 (1997), 141–167  mathnet  crossref  crossref  mathscinet  zmath  isi
    16. K. Scharnhorst, “The exact equivalence of the one-flavour lattice Thirring model with Wilson fermions to a two-colour loop model”, Nuclear Physics B, 503:1-2 (1997), 479  crossref
    17. J.-M. Maillard, C.-M. Viallet, “A comment on free-fermion conditions for lattice models in two and more dimensions”, Physics Letters B, 381:1-3 (1996), 269  crossref
    18. V V Bazhanov, N Yu Reshetikhin, “Remarks on the quantum dilogarithm”, J. Phys. A: Math. Gen., 28:8 (1995), 2217  crossref
    19. Changrim Ahn, “Thermodynamics and form factors of supersymmetric integrable field theories”, Nuclear Physics B, 422:3 (1994), 449  crossref
    20. Vladimir V. Bazhanov, Rodney J. Baxter, NATO ASI Series, 310, Integrable Quantum Field Theories, 1993, 15  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:297
    Full-text PDF :109
    References:48
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025