Abstract:
It is shown that the partition function of the free fermion model on a plane lattice has
a certain hidden symmetry. By means of a special elliptical parametrization for the
Boltzmann vertex weights, the partition function corresponding to one lattice site
(lattice-site partition function) is calculated and shown to be a meromorphic function
of three complex variables.
Citation:
V. V. Bazhanov, Yu. G. Stroganov, “Hidden symmetry of free fermion model. II. Partition function”, TMF, 63:2 (1985), 291–302; Theoret. and Math. Phys., 63:2 (1985), 519–527
This publication is cited in the following 21 articles:
Vladimir V. Bazhanov, Sergey M. Sergeev, “A distant descendant of the six-vertex model”, Nuclear Physics B, 1004 (2024), 116558
A. Melikyan, “On integrability of the one-dimensional Hubbard model”, Physics Letters B, 847 (2023), 138291
Alessandro Torrielli, “On factorising twists in AdS3 and AdS2”, Journal of Geometry and Physics, 183 (2023), 104690
A. Melikyan, “On extension of the Yang-Baxter equation and the fermionic R-operator”, Nuclear Physics B, 986 (2023), 116062
A. Melikyan, G. Weber, “The Lax pair for the fermionic Bazhanov-Stroganov R-operator”, Physics Letters B, 812 (2021), 136005
Paul Melotti, “The Free-Fermion Eight-Vertex Model: Couplings, Bipartite Dimers and Z-Invariance”, Commun. Math. Phys., 381:1 (2021), 33
Marius de Leeuw, Chiara Paletta, Anton Pribytok, Ana L. Retore, Alessandro Torrielli, “Free fermions, vertex Hamiltonians, and lower-dimensional AdS/CFT”, J. High Energ. Phys., 2021:2 (2021)
A. Melikyan, “The tetrahedral Zamolodchikov algebra for the fermionic Bazhanov-Stroganov R-operator”, Physics Letters B, 801 (2020), 135175
A. Melikyan, G. Weber, “Exceptional solutions to the eight-vertex model and integrability of anisotropic extensions of massive fermionic models”, Nuclear Physics B, 938 (2019), 640
Torrielli A., “On AdS(2)/CFT1 Transfer Matrices, Bethe Ansatz and Scale Invariance”, J. Phys. A-Math. Theor., 51:1 (2018), 015402
Michael Assis, “The 16-vertex model and its even and odd 8-vertex subcases on the square lattice”, J. Phys. A: Math. Theor., 50:39 (2017), 395001
Spiridonov V.P., “Elliptic Beta Integrals and Solvable Models of Statistical Mechanics”, Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics, Contemporary Mathematics, 563, eds. AcostaHumanez P., Finkel F., Kamran N., Olver P., Amer Mathematical Soc, 2012, 181–211
Iorgov N., Lisovyy O., “Finite-lattice form factors in free-fermion models”, J Stat Mech Theory Exp, 2011, P04011
N Iorgov, O Lisovyy, “Finite-lattice form factors in free-fermion models”, J. Stat. Mech., 2011:04 (2011), P04011
O Lisovyy, “Transfer matrix eigenvectors of the Baxter–Bazhanov–Stroganov τ2-model forN= 2”, J. Phys. A: Math. Gen., 39:10 (2006), 2265
L C Chen, F Y Wu, “The random cluster model and a new integration identity”, J. Phys. A: Math. Gen., 38:28 (2005), 6271
Yu. G. Stroganov, “Tetrahedron equation and spin integrable models on the cubic lattice”, Theoret. and Math. Phys., 110:2 (1997), 141–167
K. Scharnhorst, “The exact equivalence of the one-flavour lattice Thirring model with Wilson fermions to a two-colour loop model”, Nuclear Physics B, 503:1-2 (1997), 479
J.-M. Maillard, C.-M. Viallet, “A comment on free-fermion conditions for lattice models in two and more dimensions”, Physics Letters B, 381:1-3 (1996), 269
Changrim Ahn, “Thermodynamics and form factors of supersymmetric integrable field theories”, Nuclear Physics B, 422:3 (1994), 449