Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1985, Volume 63, Number 2, Pages 291–302 (Mi tmf4763)  

This article is cited in 21 scientific papers (total in 21 papers)

Hidden symmetry of free fermion model. II. Partition function

V. V. Bazhanov, Yu. G. Stroganov
References:
Abstract: It is shown that the partition function of the free fermion model on a plane lattice has a certain hidden symmetry. By means of a special elliptical parametrization for the Boltzmann vertex weights, the partition function corresponding to one lattice site (lattice-site partition function) is calculated and shown to be a meromorphic function of three complex variables.
Received: 12.06.1984
English version:
Theoretical and Mathematical Physics, 1985, Volume 63, Issue 2, Pages 519–527
DOI: https://doi.org/10.1007/BF01017909
Bibliographic databases:
Language: Russian
Citation: V. V. Bazhanov, Yu. G. Stroganov, “Hidden symmetry of free fermion model. II. Partition function”, TMF, 63:2 (1985), 291–302; Theoret. and Math. Phys., 63:2 (1985), 519–527
Citation in format AMSBIB
\Bibitem{BazStr85}
\by V.~V.~Bazhanov, Yu.~G.~Stroganov
\paper Hidden symmetry of free fermion model. II.~Partition function
\jour TMF
\yr 1985
\vol 63
\issue 2
\pages 291--302
\mathnet{http://mi.mathnet.ru/tmf4763}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=800071}
\transl
\jour Theoret. and Math. Phys.
\yr 1985
\vol 63
\issue 2
\pages 519--527
\crossref{https://doi.org/10.1007/BF01017909}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985AVT5500011}
Linking options:
  • https://www.mathnet.ru/eng/tmf4763
  • https://www.mathnet.ru/eng/tmf/v63/i2/p291
    Cycle of papers
    This publication is cited in the following 21 articles:
    1. Vladimir V. Bazhanov, Sergey M. Sergeev, “A distant descendant of the six-vertex model”, Nuclear Physics B, 1004 (2024), 116558  crossref
    2. A. Melikyan, “On integrability of the one-dimensional Hubbard model”, Physics Letters B, 847 (2023), 138291  crossref
    3. Alessandro Torrielli, “On factorising twists in AdS3 and AdS2”, Journal of Geometry and Physics, 183 (2023), 104690  crossref
    4. A. Melikyan, “On extension of the Yang-Baxter equation and the fermionic R-operator”, Nuclear Physics B, 986 (2023), 116062  crossref
    5. A. Melikyan, G. Weber, “The Lax pair for the fermionic Bazhanov-Stroganov R-operator”, Physics Letters B, 812 (2021), 136005  crossref
    6. Paul Melotti, “The Free-Fermion Eight-Vertex Model: Couplings, Bipartite Dimers and Z-Invariance”, Commun. Math. Phys., 381:1 (2021), 33  crossref
    7. Marius de Leeuw, Chiara Paletta, Anton Pribytok, Ana L. Retore, Alessandro Torrielli, “Free fermions, vertex Hamiltonians, and lower-dimensional AdS/CFT”, J. High Energ. Phys., 2021:2 (2021)  crossref
    8. A. Melikyan, “The tetrahedral Zamolodchikov algebra for the fermionic Bazhanov-Stroganov R-operator”, Physics Letters B, 801 (2020), 135175  crossref
    9. A. Melikyan, G. Weber, “Exceptional solutions to the eight-vertex model and integrability of anisotropic extensions of massive fermionic models”, Nuclear Physics B, 938 (2019), 640  crossref
    10. Torrielli A., “On AdS(2)/CFT1 Transfer Matrices, Bethe Ansatz and Scale Invariance”, J. Phys. A-Math. Theor., 51:1 (2018), 015402  crossref  isi
    11. Michael Assis, “The 16-vertex model and its even and odd 8-vertex subcases on the square lattice”, J. Phys. A: Math. Theor., 50:39 (2017), 395001  crossref
    12. Spiridonov V.P., “Elliptic Beta Integrals and Solvable Models of Statistical Mechanics”, Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics, Contemporary Mathematics, 563, eds. AcostaHumanez P., Finkel F., Kamran N., Olver P., Amer Mathematical Soc, 2012, 181–211  crossref  isi
    13. Iorgov N., Lisovyy O., “Finite-lattice form factors in free-fermion models”, J Stat Mech Theory Exp, 2011, P04011  isi
    14. N Iorgov, O Lisovyy, “Finite-lattice form factors in free-fermion models”, J. Stat. Mech., 2011:04 (2011), P04011  crossref
    15. O Lisovyy, “Transfer matrix eigenvectors of the Baxter–Bazhanov–Stroganov τ2-model forN= 2”, J. Phys. A: Math. Gen., 39:10 (2006), 2265  crossref
    16. L C Chen, F Y Wu, “The random cluster model and a new integration identity”, J. Phys. A: Math. Gen., 38:28 (2005), 6271  crossref
    17. Yu. G. Stroganov, “Tetrahedron equation and spin integrable models on the cubic lattice”, Theoret. and Math. Phys., 110:2 (1997), 141–167  mathnet  crossref  crossref  mathscinet  zmath  isi
    18. K. Scharnhorst, “The exact equivalence of the one-flavour lattice Thirring model with Wilson fermions to a two-colour loop model”, Nuclear Physics B, 503:1-2 (1997), 479  crossref
    19. J.-M. Maillard, C.-M. Viallet, “A comment on free-fermion conditions for lattice models in two and more dimensions”, Physics Letters B, 381:1-3 (1996), 269  crossref
    20. Changrim Ahn, “Thermodynamics and form factors of supersymmetric integrable field theories”, Nuclear Physics B, 422:3 (1994), 449  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:366
    Full-text PDF :144
    References:70
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025