Abstract:
Formulas for the nonlinear representation of the Lorentz group are generalized for the wave functions of Wigner particles whose trajectories begin at phase-space points with nonzero coordinates.
Citation:
O. I. Zavialov, “Nonlinear Representations of the Lorentz Group in Quantum Field Theory”, TMF, 127:1 (2001), 75–89; Theoret. and Math. Phys., 127:1 (2001), 471–482
\Bibitem{Zav01}
\by O.~I.~Zavialov
\paper Nonlinear Representations of the Lorentz Group in Quantum Field Theory
\jour TMF
\yr 2001
\vol 127
\issue 1
\pages 75--89
\mathnet{http://mi.mathnet.ru/tmf449}
\crossref{https://doi.org/10.4213/tmf449}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1863520}
\zmath{https://zbmath.org/?q=an:0998.81040}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 127
\issue 1
\pages 471--482
\crossref{https://doi.org/10.1023/A:1010311924883}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000170446000006}
Linking options:
https://www.mathnet.ru/eng/tmf449
https://doi.org/10.4213/tmf449
https://www.mathnet.ru/eng/tmf/v127/i1/p75
This publication is cited in the following 2 articles:
Filinov V., Larkin A., Fortov V., “Screening Properties of Quark-Gluon Plasma Obtained From Distribution and Correlation Functions of the Constituent Quasiparticle Model”, Phys. Rev. C, 101:2 (2020), 025202
O. I. Zavialov, “On the Mechanism for Nonlinear Representations of the Lorentz Group Arising in Quantum Field Theory”, Theoret. and Math. Phys., 128:3 (2001), 1176–1180