Typesetting math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2001, Volume 127, Number 1, Pages 63–74
DOI: https://doi.org/10.4213/tmf1926
(Mi tmf1926)
 

This article is cited in 12 scientific papers (total in 12 papers)

Hyperbolic Equations Admitting Differential Substitutions

S. Ya. Startsev

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
References:
Abstract: We show that the first n1 Laplace invariants of a scalar hyperbolic equation obtained from an equation of the same form under a differential substitution of the nth order have a zeroth order with respect to one of the characteristics. It follows that all Laplace invariants of an equation admitting substitutions of an arbitrarily high order must have a zeroth order. Three special cases of such equations are considered: those admitting autosubstitutions, those obtained from a linear equation by a differential substitution, and those with solutions depending simultaneously on both an arbitrary function of x and an arbitrary function of y.
Received: 24.10.2000
English version:
Theoretical and Mathematical Physics, 2001, Volume 127, Issue 1, Pages 460–470
DOI: https://doi.org/10.1023/A:1010359808044
Bibliographic databases:
Language: Russian
Citation: S. Ya. Startsev, “Hyperbolic Equations Admitting Differential Substitutions”, TMF, 127:1 (2001), 63–74; Theoret. and Math. Phys., 127:1 (2001), 460–470
Citation in format AMSBIB
\Bibitem{Sta01}
\by S.~Ya.~Startsev
\paper Hyperbolic Equations Admitting Differential Substitutions
\jour TMF
\yr 2001
\vol 127
\issue 1
\pages 63--74
\mathnet{http://mi.mathnet.ru/tmf1926}
\crossref{https://doi.org/10.4213/tmf1926}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1863519}
\zmath{https://zbmath.org/?q=an:0990.35106}
\elib{https://elibrary.ru/item.asp?id=13371184}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 127
\issue 1
\pages 460--470
\crossref{https://doi.org/10.1023/A:1010359808044}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000170446000005}
Linking options:
  • https://www.mathnet.ru/eng/tmf1926
  • https://doi.org/10.4213/tmf1926
  • https://www.mathnet.ru/eng/tmf/v127/i1/p63
  • This publication is cited in the following 12 articles:
    1. Sergei Igonin, “Simplifications of Lax pairs for differential–difference equations by gauge transformations and (doubly) modified integrable equations”, Partial Differential Equations in Applied Mathematics, 11 (2024), 100821  crossref
    2. M. N. Kuznetsova, “On nonlinear hyperbolic systems related by Bäcklund transforms”, Ufa Math. J., 15:3 (2023), 80–87  mathnet  crossref
    3. Rustem N. Garifullin, Ravil I. Yamilov, “Integrable Modifications of the Ito–Narita–Bogoyavlensky Equation”, SIGMA, 15 (2019), 062, 15 pp.  mathnet  crossref
    4. V. M. Zhuravlev, “Mnogofunktsionalnye podstanovki i solitonnye resheniya integriruemykh nelineinykh uravnenii”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2019, no. 3, 93–119  mathnet  crossref
    5. Sergey ((((((() Grishin ((((((()“. . 140 . 1 2 (History of the Volga Railway is the First Part of the Second)”, SSRN Journal, 2015  crossref
    6. M. N. Kuznetsova, “O nelineinykh giperbolicheskikh uravneniyakh, svyazannykh differentsialnymi podstanovkami s uravneniem Kleina–Gordona”, Ufimsk. matem. zhurn., 4:3 (2012), 86–103  mathnet  mathscinet
    7. Mariya N. Kuznetsova, Asli Pekcan, Anatoliy V. Zhiber, “The Klein–Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy)”, SIGMA, 8 (2012), 090, 37 pp.  mathnet  crossref  mathscinet
    8. Uenal G., Turkeri H., Khalique Ch.M., “Explicit Solution Processes for Nonlinear Jump-Diffusion Equations”, J Nonlinear Math Phys, 17:3 (2010), 281–310  crossref  mathscinet  adsnasa  isi  scopus  scopus
    9. V. M. Zhuravlev, “The method of generalized Cole–Hopf substitutions and new examples of linearizable nonlinear evolution equations”, Theoret. and Math. Phys., 158:1 (2009), 48–60  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. S. Ya. Startsev, “On the variational integrating matrix for hyperbolic systems”, J. Math. Sci., 151:4 (2008), 3245–3253  mathnet  crossref  mathscinet  zmath  elib  elib
    11. A. M. Gurieva, A. V. Zhiber, “Laplace Invariants of Two-Dimensional Open Toda Lattices”, Theoret. and Math. Phys., 138:3 (2004), 338–355  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    12. A. V. Zhiber, S. Ya. Startsev, “Integrals, Solutions, and Existence Problems for Laplace Transformations of Linear Hyperbolic Systems”, Math. Notes, 74:6 (2003), 803–811  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:445
    Full-text PDF :209
    References:48
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025